skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Millimeter Wave and Sub-THz Indoor Radio Propagation Channel Measurements, Models, and Comparisons in an Office Environment
Abstract—This letter provides a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014-2020 in an indoor office environment. Side-by-side comparisons of propagation characteristics (e.g., large-scale path loss and multipath time dispersion) across a wide range of frequencies from the low millimeter wave band of 28 GHz to the sub-THz band of 140 GHz illustrate the key similarities and differences in indoor wireless channels. The measurements and models show remarkably similar path loss exponents over frequencies in both line-of-sight (LOS) and non-LOS (NLOS) scenarios, when using a one meter free space reference distance, while the multipath time dispersion becomes smaller at higher frequencies. The 3GPP indoor channel model overestimates the large-scale path loss and has unrealistic large numbers of clusters and multipath components per cluster compared to the measured channel statistics in this letter. Index Terms—mmWave, THz, channel models, multipath time dispersion, 5G, 6G, large-scale path loss, 3GPP InH.  more » « less
Award ID(s):
1909206 2037845
PAR ID:
10309456
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE communications letters
Volume:
25
Issue:
10
ISSN:
1089-7798
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies are expected to play a vital role in 6G wireless systems and beyond due to the vast available bandwidth of many tens of GHz. This paper presents an indoor 3-D spatial statistical channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020. Omnidirectional and directional path loss models and channel statistics such as the number of time clusters, cluster delays, and cluster powers were derived from over 15,000 measured power delay profiles. The resulting channel statistics show that the number of time clusters follows a Poisson distribution and the number of subpaths within each cluster follows a composite exponential distribution for both LOS and NLOS environments at 28 and 140 GHz. This paper proposes a unified indoor statistical channel model for mmWave and sub-Terahertz frequencies following the mathematical framework of the previous outdoor NYUSIM channel models. A corresponding indoor channel simulator is developed, which can recreate 3-D omnidirectional, directional, and multiple input multiple output (MIMO) channels for arbitrary mmWave and sub-THz carrier frequency up to 150 GHz, signal bandwidth, and antenna beamwidth. The presented statistical channel model and simulator will guide future air-interface, beamforming, and transceiver designs for 6G and beyond. Index Terms—Millimeter-wave, terahertz, radio propagation, indoor office scenario, channel measurement, channel modeling, channel simulation, NYUSIM, 28 GHz, 140 GHz, 142 GHz, 5G, 6G. 
    more » « less
  2. null (Ed.)
    Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum. 
    more » « less
  3. Abstract—Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum. Index Terms—Millimeter-Wave; Terahertz; Indoor Office; Channel Measurement; Channel Modeling; Channel Simulation; 5G; 6G 
    more » « less
  4. null (Ed.)
    This paper provides indoor reflection, scattering, transmission, and large-scale path loss measurements and models, which describe the main propagation mechanisms at millimeter wave and Terahertz frequencies. Channel properties for common building materials (drywall and clear glass) are carefully studied at 28, 73, and 140 GHz using a wideband sliding correlation based channel sounder system with rotatable narrow-beam horn antennas. Reflection coefficient is shown to linearly increase as the incident angle increases, and lower reflection loss (e.g., stronger reflections) are observed as frequencies increase for a given incident angle. Although backscatter from drywall is present at 28, 73, and 140 GHz, smooth surfaces (like drywall) are shown to be modeled as a simple reflected surface, since the scattered power is 20 dB or more below the reflected power over the measured range of frequency and angles. Partition loss tends to increase with frequency, but the amount of loss is material dependent. Both clear glass and drywall are shown to induce a depolarizing effect, which becomes more prominent as frequency increases. Indoor propagation measurements and large-scale indoor path loss models at 140 GHz are provided, revealing similar path loss exponent and shadow fading as observed at 28 and 73 GHz. The measurements and models in this paper can be used for future wireless system design and other applications within buildings for frequencies above 100 GHz 
    more » « less
  5. Abstract—Sixth generation (6G) cellular systems are expected to extend the operational range to sub-Terahertz (THz) frequencies between 100 and 300 GHz due to the broad unexploited spectrum therein. A proper channel model is needed to accurately describe spatial and temporal channel characteristics and faithfully create channel impulse responses at sub-THz frequencies. This paper studies the channel spatial statistics such as the number of spatial clusters and cluster power distribution based on recent radio propagation measurements conducted at 142 GHz in an urban microcell (UMi) scenario. For the 28 measured locations, we observe one to four spatial clusters at most locations. A detailed spatial statistical multiple input multiple output (MIMO) channel generation procedure is introduced based on the derived empirical channel statistics. We find that beamforming provides better spectral efficiency than spatial multiplexing in the LOS scenario due to the boresight path, and two spatial streams usually offer the highest spectral efficiency at most NLOS locations due to the limited number of spatial clusters. Index Terms—Channel Measurement; Channel Modeling; Spatial Statistics; Beamforming; Spatial Multiplexing; MIMO; Sub- Terahertz; 140 GHz; 5G; 6G 
    more » « less