skip to main content


Title: Geometrical control of the magnetic anisotropy in six coordinate cobalt complexes
The geometry of cobalt( ii ) ions in the axially distorted octahedral cation in [Co(MeCN) 6 ](BF 4 ) 2 ( 1 ) was compared to the trigonal prismatic cation in [CoTp py ]PF 6 ( 2 ) which revealed significant differences in magnetic anisotropy. Combined experimental and ab initio CASSCF/NEVPT2 calculations support the observed zero field SMM behaviour for 2 , with easy axis anisotropy, attributed to the rigidity of the trigonal prismatic ligand. Strong transverse anisotropy for 1 leads to significant quantum tunnelling processes.  more » « less
Award ID(s):
1808779
NSF-PAR ID:
10309556
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
60
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc 3 (THF) 2 Li 2 ] − , of the late trivalent lanthanide ions (Ln = Gd ( 1 ), Ho ( 2 ), Er ( 3 ), Tm ( 4 ), Yb ( 5 ), Lu ( 6 )). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc 2− ) average twist angle with decreasing ionic radius ( r ion ) of the central Ln ion, resulting in the largest average Fc 2− twist angles for the Lu 3+ compound 6 . Such high sensitivity of the twist angle to changes in r ion is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho 3+ to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal ( U ) of 110–131 cm −1 . In contrast, compounds featuring Ln ions with prolate electron density ( 3–5 ) don't show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2 ) exchange to yield [HoFc 3 (THF*) 2 Li 2 ] − ( 2-THF* ) and [HoFc 3 (py) 2 Li 2 ] − ( 2-py ) motifs. We find that larger average Fc 2− twist angles (in 2-THF* and 2-py as compared to in 2 ) result in faster magnetic relaxation times at a given temperature. 
    more » « less
  2. Trigonal bipyramidal Ni(II) complex [Ni(Me6tren)Cl](ClO4) (1, Me6tren = tris[2-(dimethylamino)ethyl]amine) has recently been shown by Ruamps and coworkers to possess large, uniaxial magnetic anisotropy (J. Am. Chem. Soc. 2013, 135, 3017). Their HF-EPR studies gave rhombic zero-field-splitting (ZFS) parameter E = 1.56(5) cm-1 for 1. However, the axial ZFS parameter D has not been determined. We have used far-IR magnetic spectroscopy (FIRMS) at 0-17.5 T and 5 K to probe the magnetic transitions between the MS = 1 and MS = 0 states of the ground spin state S = 1 in 1. Direct observation of the transitions between Zeeman-split states in FIRMS give axial ZFS parameter D = -110.7(3) cm-1. Hirshfeld surface analysis of the crystal structure of 1 has been performed, revealing the interactions between the cation and anion in a molecule of 1 as well as among the molecules of 1 in crystals. 
    more » « less
  3. null (Ed.)
    The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me 6 tren) 2 MII2(C 6 H 4 O 2 2− )] 2+ (Me 6 tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me 6 tren) 2 MII2(C 6 H 4 O 2 − ˙)] 3+ . Single-crystal X-ray diffraction shows that the Me 6 tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p -benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel( ii ) complex exhibits a substantial J < −600 cm −1 , resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm −1 , respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of U eff = 22 and 46 cm −1 , respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear Ni II complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation. 
    more » « less
  4. We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M  =  Mo or W; POCOPtBu  =  κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu  =  2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry.

     
    more » « less