skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria
Antibiotic resistance is a major public health concern. The shrinking selection of effective antibiotics and lack of new development is making the situation worse. Gram-negative bacteria more specifically pose serious threat because of their double layered cell envelope and effective efflux systems, which is a challenge for drugs to penetrate. One promising approach to breach this barrier is the “Trojan horse strategy”. In this technique, an antibiotic molecule is conjugated with a nutrient molecule that helps the antibiotic to enter the cell through dedicated transporters for the nutrient. Here, we explored the approach using biotin conjugation with a florescent molecule Atto565 to determine if biotinylation enhances accumulation. Biotin is an essential vitamin for bacteria and is obtained through either synthesis or uptake from the environment. We found that biotinylation enhanced accumulation of Atto565 in E . coli . However, the enhancement did not seem to be due to uptake through biotin transporters since the presence of free biotin had no observable impact on accumulation. Accumulated compound was mostly in the periplasm, as determined by cell fractionation studies. This was further confirmed through the observation that expression of streptavidin in the periplasm specifically enhanced the accumulation of biotinylated Atto565. This enhancement was not observed when streptavidin was expressed in the cytoplasm indicating no significant distribution of the compound inside the cytoplasm. Using gene knockout strains, plasmid complementation and mutagenesis studies we demonstrated that biotinylation made the compound a better passenger through OmpC, an outer membrane porin. Density functional theory (DFT)-based evaluation of the three-dimensional geometries showed that biotinylation did not directly stabilize the conformation of the compound to make it favorable for the entry through a pore. Further studies including molecular dynamics simulations are necessary to determine the possible mechanisms of enhanced accumulation of the biotinylated Atto565.  more » « less
Award ID(s):
1709381
PAR ID:
10309575
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
van Veen, Hendrik W.
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
11
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biotin-labeled proteins are widely used as tools to study protein–protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins. 
    more » « less
  2. We have developed a strategy for synthesizing immediately activable, water-soluble, compact (∼10–12 nm hydrodynamic diameter) quantum dots with a small number of stable and controllable conjugation handles for long distance delivery and subsequent biomolecule conjugation. Upon covalent conjugation with engineered monovalent streptavidin, the sample results in a population consisting of low-valency quantum dots. Alternatively, we have synthesized quantum dots with a small number of biotin molecules that can self-assemble with engineered divalent streptavidin via high-affinity biotin–streptavidin interactions. Being compact, stable and highly specific against biotinylated proteins of interest, these low-valency quantum dots are ideal for labeling and tracking single molecules on the cell surface with high spatiotemporal resolution for different biological systems and applications. 
    more » « less
  3. continuing emphasis. Polypropylene (PP) capillary-channeled polymer (C-CP) fiber columns are modified with the biotin- binding protein streptavidin (SAV) to capture biotinylated proteins. The loading characteristics of SAV on fiber supports were determined using breakthrough curves and frontal analysis. Based on adsorption data, a 3-min on-column loading at a flow rate of 0.5 mL min−1 (295.2 cm h−1) with a SAV feed concentration of 0.5 mg mL−1 produces a SAV loading capacity of 1.4 mg g−1 fiber. SAV has an incredibly high affinity for the small-molecule biotin (10−14 M), such that this binding relationship can be exploited by labeling a target protein with biotin via an Avi-tag. To evaluate the capture of the biotinylated proteins on the modified PP surface, the biotinylated versions of bovine serum albumin (b-BSA) and green fluorescent protein (b-GFP) were utilized as probe species. The loading buffer composition and flow rate were optimized towards protein capture. The non-ionic detergent Tween-20 was added to the deposition solutions to minimize non-specific binding. Values of 0.25–0.50% (v/v) Tween-20 in PBS exhibited better capture efficiency, while minimizing the non-specific binding for b-BSA and b-GFP, respectively. The C-CP fiber platform has the potential to provide a fast and low-cost method to capture targeted proteins for applications including protein purification or pull-down assays. 
    more » « less
  4. We demonstrate a higher sensitivity detection of proteins in a photonic crystal platform by including a deep subwavelength feature in the unit cell that locally increases the energy density of light. Through both simulations and experiments, the sensing capability of a deep subwavelength-engineered silicon antislot photonic crystal nanobeam (PhCNB) cavity is compared to that of a traditional PhCNB cavity. The redistribution and local enhancement of the energy density by the 50 nm antislot enable stronger light–molecule interaction at the surface of the antislot and lead to a larger resonance shift upon protein binding. This surface-based energy enhancement is confirmed by experiments demonstrating a nearly 50% larger resonance shift upon attachment of streptavidin molecules to biotin-functionalized antislot PhCNB cavities. 
    more » « less
  5. Brun, Yves V. (Ed.)
    ABSTRACT Fluctuations in osmolarity are one of the most prevalent stresses to which bacteria must adapt, both hypo- and hyperosmotic conditions. Most bacteria cope with high osmolarity by accumulating compatible solutes (osmolytes) in the cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus , a halophile, utilizes at least six compatible solute transporters for the uptake of osmolytes: two ABC family ProU transporters and four betaine-carnitine-choline transporter (BCCT) family transporters. The full range of compatible solutes transported by this species has yet to be determined. Using an osmolyte phenotypic microarray plate for growth analyses, we expanded the known osmolytes used by V. parahaemolyticus to include N , N -dimethylglycine (DMG), among others. Growth pattern analysis of four triple- bccT mutants, possessing only one functional BCCT, indicated that BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG. BccT1 was unusual in that it could take up both compounds with methylated head groups (glycine betaine [GB], choline, and DMG) and cyclic compounds (ectoine and proline). Bioinformatics analysis identified the four coordinating amino acid residues for GB in the BccT1 protein. In silico modeling analysis demonstrated that GB, DMG, and ectoine docked in the same binding pocket in BccT1. Using site-directed mutagenesis, we showed that a strain with all four residues mutated resulted in the loss of uptake of GB, DMG, and ectoine. We showed that three of the four residues were essential for ectoine uptake, whereas only one of the residues was important for GB uptake. Overall, we have demonstrated that DMG is a highly effective compatible solute for Vibrio species and have elucidated the amino acid residues in BccT1 that are important for the coordination of GB, DMG, and ectoine transport. IMPORTANCE Vibrio parahaemolyticus possesses at least six osmolyte transporters, which allow the bacterium to adapt to high-salinity conditions. In this study, we identified several additional osmolytes that were utilized by V. parahaemolyticus . We demonstrated that the compound DMG, which is present in the marine environment, was a highly effective osmolyte for Vibrio species. We determined that DMG is transported via BCCT family carriers, which have not been shown previously to take up this compound. BccT1 was a carrier for GB, DMG, and ectoine, and we identified the amino acid residues essential for the coordination of these compounds. The data suggest that for BccT1, GB is more easily accommodated than ectoine in the transporter binding pocket. 
    more » « less