skip to main content


Title: Beyond UVJ: Color Selection of Galaxies at z > 3
We calibrate and validate different methods of rest-frame color-color selection to identify galaxies in active star-forming and quiescent stages of their evolution. Our method is similar to the widely-used UVJ color-color diagram, which is an effective way to distinguish between quiescent and star-forming galaxies using their rest-frame U-V and V-J colors. UVJ colors suffer known systematics, and at z > 4 the method must be extrapolated because the rest-frame J-band moves beyond the coverage of the deepest bandpasses (typically IRAC 4.5 µm). This leads to biases: for example, spectroscopic campaigns have shown that UVJ-quiescent samples include ~10-30% contamination from galaxies with significant amounts of star formation. Alternative selection methods will be important not just to mitigate these biases, but also in the JWST era where NIRCam coverage is also limited to ~5 µm . In this poster, we present calibrations of alternative rest-frame filter combinations that are applicable for galaxies at redshifts z = 4 - 6. We apply our method to a stellar mass-limited sample of galaxies at 4 < z < 6 from the FLAMINGOS-2 Extragalactic Near-Infrared K-Split (FENIKS) survey. FENIKS is a deep (23.1 - 24.5 AB mag) survey employing two novel filters which split the Ks band ( λc = 2.2 µm) K-blue and K-red filters ( λc = 1.9 and 2.3 µm, respectively), allowing for finer sampling of the Balmer/4000 Å break of galaxies with evolved populations. We quantify the improvement in the selection of quiescent and star-forming galaxies using the alternative color-color selection methods. Furthermore, we investigate correlations between galaxy properties and their rest-frame colors, in particular examining purity and completeness of these selection methods. Finally, we explore the above for a wide range of synthetic filter combinations to inform accurate selections of various galaxy populations and rule out unphysical areas of parameter space for these populations.  more » « less
Award ID(s):
2009632
NSF-PAR ID:
10309725
Author(s) / Creator(s):
Date Published:
Journal Name:
Bulletin of the American Astronomical Society
Volume:
53
Issue:
1
ISSN:
2330-9458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new rest-frame color–color selection method using synthetic us − gs and gs − is, (ugi)s colors to identify star-forming and quiescent galaxies. Our method is similar to the widely used U − V versus V − J (UVJ) diagram. However, UVJ suffers known systematics. Spectroscopic campaigns have shown that UVJ-selected quiescent samples at z ≳ 3 include ∼10%–30% contamination from galaxies with dust-obscured star formation and strong emission lines. Moreover, at z > 3, UVJ colors are extrapolated because the rest-frame band shifts beyond the coverage of the deepest bandpasses at <5 μm (typically Spitzer/IRAC 4.5 μm or future JWST/NIRCam observations). We demonstrate that (ugi)s offers improvements to UVJ at z > 3, and can be applied to galaxies in the JWST era. We apply (ugi)s selection to galaxies at 0.5 < z < 6 from the (observed) 3D-HST and UltraVISTA catalogs, and to the (simulated) JAGUAR catalogs. We show that extrapolation can affect (V − J)0 color by up to 1 mag, but changes ${({g}_{s}-{i}_{s})}_{0}$ color by ≤0.2 mag, even at z ≃ 6. While (ugi)s-selected quiescent samples are comparable to UVJ in completeness (both achieve ∼85%–90% at z = 3–3.5), (ugi)s reduces contamination in quiescent samples by nearly a factor of 2, from ≃35% to ≃17% at z = 3, and from ≃60% to ≃33% at z = 6. This leads to improvements in the true-to-false-positive ratio (TP/FP), where we find TP/FP ≳2.2 for (ugi)s at z ≃ 3.5 − 6, compared to TP/FP < 1 for UVJ-selected samples. This indicates that contaminants will outnumber true quiescent galaxies in UVJ at these redshifts, while (ugi)s will provide higher-fidelity samples. 
    more » « less
  2. Abstract

    Over the past decade, rest-frame color–color diagrams have become popular tools for selecting quiescent galaxies at high redshift, breaking the color degeneracy between quiescent and dust-reddened star-forming galaxies. In this work, we study one such color–color selection tool—the rest-frameUVversusVJdiagram—by employing mock observations of cosmological galaxy formation simulations. In particular, we conduct numerical experiments assessing both trends in galaxy properties inUVJspace and the color–color evolution of massive galaxies as they quench at redshiftsz∼ 1–2. We find that our models broadly reproduce the observedUVJdiagram atz= 1–2, including (for the first time in a cosmological simulation) reproducing the population of extremely dust-reddened galaxies in the top right of theUVJdiagram. However, our models primarily populate this region with low-mass galaxies and do not produce as clear a bimodality between star-forming and quiescent galaxies as is seen in observations. The former issue is due to an excess of dust in low-mass galaxies and relatively gray attenuation curves in high-mass galaxies, while the latter is due to the overpopulation of the green valley insimba. When investigating the time evolution of galaxies on theUVJdiagram, we find that the quenching pathway on theUVJdiagram is independent of the quenching timescale, and instead dependent primarily on the average specific star formation rate in the 1 Gyr prior to the onset of quenching. Our results support the interpretation of different quenching pathways as corresponding to the divergent evolution of post-starburst and green valley galaxies.

     
    more » « less
  3. Abstract We use photometric redshifts and statistical background subtraction to measure stellar mass functions in galaxy group-mass (4.5 − 8 × 1013 M⊙) haloes at 1 < z < 1.5. Groups are selected from COSMOS and SXDF, based on X-ray imaging and sparse spectroscopy. Stellar mass (Mstellar) functions are computed for quiescent and star-forming galaxies separately, based on their rest-frame UVJ colours. From these we compute the quiescent fraction and quiescent fraction excess (QFE) relative to the field as a function of Mstellar. QFE increases with Mstellar, similar to more massive clusters at 1 < z < 1.5. This contrasts with the apparent separability of Mstellar and environmental factors on galaxy quiescent fractions at z ∼ 0. We then compare our results with higher mass clusters at 1 < z < 1.5 and lower redshifts. We find a strong QFE dependence on halo mass at fixed Mstellar; well fit by a logarithmic slope of d(QFE)/dlog (Mhalo) ∼ 0.24 ± 0.04 for all Mstellar and redshift bins. This dependence is in remarkably good qualitative agreement with the hydrodynamic simulation BAHAMAS, but contradicts the observed dependence of QFE on Mstellar. We interpret the results using two toy models: one where a time delay until rapid (instantaneous) quenching begins upon accretion to the main progenitor (“no pre-processing”) and one where it starts upon first becoming a satellite (“pre-processing”). Delay times appear to be halo mass dependent, with a significantly stronger dependence required without pre-processing. We conclude that our results support models in which environmental quenching begins in low-mass (<1014M⊙) haloes at z > 1. 
    more » « less
  4. null (Ed.)
    ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples. 
    more » « less
  5. Abstract

    Single flux density measurements at observed-frame submillimeter and millimeter wavelengths are commonly used to probe dust and gas masses in galaxies. In this Letter, we explore the robustness of this method to infer dust mass, focusing on quiescent galaxies, using a series of controlled experiments on four massive halos from the Feedback in Realistic Environments project. Our starting point is four star-forming central galaxies at seven redshifts betweenz= 1.5 andz= 4.5. We generate modified quiescent galaxies that have been quenched for 100 Myr, 500 Myr, or 1 Gyr prior to each of the studied redshifts by reassigning stellar ages. We derive spectral energy distributions for each fiducial and modified galaxy using radiative transfer. We demonstrate that the dust mass inferred is highly dependent on the assumed dust temperature,Tdust, which is often unconstrained observationally. Motivated by recent work on quiescent galaxies that assumedTdust∼ 25 K, we show that the ratio between dust mass and 1.3 mm flux density can be higher than inferred by up to an order of magnitude, due to the considerably lower dust temperatures seen in non-star-forming galaxies. This can lead to an underestimation of dust mass (and, when submillimeter flux density is used as a proxy for molecular gas content and gas mass). This underestimation is most severe at higher redshifts, where the observed-frame 1.3 mm flux density probes rest-frame wavelengths far from the Rayleigh–Jeans regime, and hence depends superlinearly on dust temperature. We fit relations between ratios of rest-frame far-infrared flux densities and mass-weighted dust temperature that can be used to constrain dust temperatures from observations and hence derive more reliable dust and molecular gas masses.

     
    more » « less