skip to main content

Title: Named Data Networking for Genomics Data Management and Integrated Workflows
Advanced imaging and DNA sequencing technologies now enable the diverse biology community to routinely generate and analyze terabytes of high resolution biological data. The community is rapidly heading toward the petascale in single investigator laboratory settings. As evidence, the single NCBI SRA central DNA sequence repository contains over 45 petabytes of biological data. Given the geometric growth of this and other genomics repositories, an exabyte of mineable biological data is imminent. The challenges of effectively utilizing these datasets are enormous as they are not only large in the size but also stored in geographically distributed repositories in various repositories such as National Center for Biotechnology Information (NCBI), DNA Data Bank of Japan (DDBJ), European Bioinformatics Institute (EBI), and NASA’s GeneLab. In this work, we first systematically point out the data-management challenges of the genomics community. We then introduce Named Data Networking (NDN), a novel but well-researched Internet architecture, is capable of solving these challenges at the network layer. NDN performs all operations such as forwarding requests to data sources, content discovery, access, and retrieval using content names (that are similar to traditional filenames or filepaths) and eliminates the need for a location layer (the IP address) for data management. Utilizing more » NDN for genomics workflows simplifies data discovery, speeds up data retrieval using in-network caching of popular datasets, and allows the community to create infrastructure that supports operations such as creating federation of content repositories, retrieval from multiple sources, remote data subsetting, and others. Named based operations also streamlines deployment and integration of workflows with various cloud platforms. Our contributions in this work are as follows 1) we enumerate the cyberinfrastructure challenges of the genomics community that NDN can alleviate, and 2) we describe our efforts in applying NDN for a contemporary genomics workflow (GEMmaker) and quantify the improvements. The preliminary evaluation shows a sixfold speed up in data insertion into the workflow. 3) As a pilot, we have used an NDN naming scheme (agreed upon by the community and discussed in Section 4 ) to publish data from broadly used data repositories including the NCBI SRA. We have loaded the NDN testbed with these pre-processed genomes that can be accessed over NDN and used by anyone interested in those datasets. Finally, we discuss our continued effort in integrating NDN with cloud computing platforms, such as the Pacific Research Platform (PRP). The reader should note that the goal of this paper is to introduce NDN to the genomics community and discuss NDN’s properties that can benefit the genomics community. We do not present an extensive performance evaluation of NDN—we are working on extending and evaluating our pilot deployment and will present systematic results in a future work. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2019012
Publication Date:
NSF-PAR ID:
10309771
Journal Name:
Frontiers in Big Data
Volume:
4
ISSN:
2624-909X
Sponsoring Org:
National Science Foundation
More Like this
  1. A wealth of viral data sits untapped in publicly available metagenomic data sets when it might be extracted to create a usable index for the virological research community. We hypothesized that work of this complexity and scale could be done in a hackathon setting. Ten teams comprised of over 40 participants from six countries, assembled to create a crowd-sourced set of analysis and processing pipelines for a complex biological data set in a three-day event on the San Diego State University campus starting 9 January 2019. Prior to the hackathon, 141,676 metagenomic data sets from the National Center for Biotechnologymore »Information (NCBI) Sequence Read Archive (SRA) were pre-assembled into contiguous assemblies (contigs) by NCBI staff. During the hackathon, a subset consisting of 2953 SRA data sets (approximately 55 million contigs) was selected, which were further filtered for a minimal length of 1 kb. This resulted in 4.2 million (Mio) contigs, which were aligned using BLAST against all known virus genomes, phylogenetically clustered and assigned metadata. Out of the 4.2 Mio contigs, 360,000 contigs were labeled with domains and an additional subset containing 4400 contigs was screened for virus or virus-like genes. The work yielded valuable insights into both SRA data and the cloud infrastructure required to support such efforts, revealing analysis bottlenecks and possible workarounds thereof. Mainly: (i) Conservative assemblies of SRA data improves initial analysis steps; (ii) existing bioinformatic software with weak multithreading/multicore support can be elevated by wrapper scripts to use all cores within a computing node; (iii) redesigning existing bioinformatic algorithms for a cloud infrastructure to facilitate its use for a wider audience; and (iv) a cloud infrastructure allows a diverse group of researchers to collaborate effectively. The scientific findings will be extended during a follow-up event. Here, we present the applied workflows, initial results, and lessons learned from the hackathon.« less
  2. Motivation: As the size of high-throughput DNA sequence datasets continues to grow, the cost of transferring and storing the datasets may prevent their processing in all but the largest data centers or commercial cloud providers. To lower this cost, it should be possible to process only a subset of the original data while still preserving the biological information of interest. Results: Using 4 high-throughput DNA sequence datasets of differing sequencing depth from 2 species as use cases, we demonstrate the effect of processing partial datasets on the number of detected RNA transcripts using an RNA-Seq workflow. We used transcript detectionmore »to decide on a cutoff point. We then physically transferred the minimal partial dataset and compared with the transfer of the full dataset, which showed a reduction of approximately 25% in the total transfer time. These results suggest that as sequencing datasets get larger, one way to speed up analysis is to simply transfer the minimal amount of data that still sufficiently detects biological signal. Availability: All results were generated using public datasets from NCBI and publicly available open source software.« less
  3. AI (artificial intelligence)-based analysis of geospatial data has gained a lot of attention. Geospatial datasets are multi-dimensional; have spatiotemporal context; exist in disparate formats; and require sophisticated AI workflows that include not only the AI algorithm training and testing, but also data preprocessing and result post-processing. This complexity poses a huge challenge when it comes to full-stack AI workflow management, as researchers often use an assortment of time-intensive manual operations to manage their projects. However, none of the existing workflow management software provides a satisfying solution on hybrid resources, full file access, data flow, code control, and provenance. This papermore »introduces a new system named Geoweaver to improve the efficiency of full-stack AI workflow management. It supports linking all the preprocessing, AI training and testing, and post-processing steps into a single automated workflow. To demonstrate its utility, we present a use case in which Geoweaver manages end-to-end deep learning for in-time crop mapping using Landsat data. We show how Geoweaver effectively removes the tedium of managing various scripts, code, libraries, Jupyter Notebooks, datasets, servers, and platforms, greatly reducing the time, cost, and effort researchers must spend on such AI-based workflows. The concepts demonstrated through Geoweaver serve as an important building block in the future of cyberinfrastructure for AI research.« less
  4. Scientific workflows drive most modern large-scale science breakthroughs by allowing scientists to define their computations as a set of jobs executed in a given order based on their data dependencies. Workflow management systems (WMSs) have become key to automating scientific workflows-executing computational jobs and orchestrating data transfers between those jobs running on complex high-performance computing (HPC) platforms. Traditionally, WMSs use files to communicate between jobs: a job writes out files that are read by other jobs. However, HPC machines face a growing gap between their storage and compute capabilities. To address that concern, the scientific community has adopted a newmore »approach called in situ, which bypasses costly parallel filesystem I/O operations with faster in-memory or in-network communications. When using in situ approaches, communication and computations can be interleaved. In this work, we leverage the Decaf in situ dataflow framework to accelerate task-based scientific workflows managed by the Pegasus WMS, by replacing file communications with faster MPI messaging. We propose a new execution engine that uses Decaf to manage communications within a sub-workflow (i.e., set of jobs) to optimize inter-job communications. We consider two workflows in this study: (i) a synthetic workflow that benchmarks and compares file- and MPI-based communication; and (ii) a realistic bioinformatics workflow that computes mu-tational overlaps in the human genome. Experiments show that in situ communication can improve the bioinformatics workflow execution time by 22% to 30% compared with file communication. Our results motivate further opportunities and challenges for bridging traditional WMSs with in situ frameworks.« less
  5. Computational science today depends on complex, data-intensive applications operating on datasets from a variety of scientific instruments. A major challenge is the integration of data into the scientist's workflow. Recent advances in dynamic, networked cloud resources provide the building blocks to construct reconfigurable, end-to-end infrastructure that can increase scientific productivity. However, applications have not adequately taken advantage of these advanced capabilities. In this work, we have developed a novel network-centric platform that enables high-performance, adaptive data flows and coordinated access to distributed cloud resources and data repositories for atmospheric scientists. We demonstrate the effectiveness of our approach by evaluating time-critical,more »adaptive weather sensing workflows, which utilize advanced networked infrastructure to ingest live weather data from radars and compute data products used for timely response to weather events. The workflows are orchestrated by the Pegasus workflow management system and were chosen because of their diverse resource requirements. We show that our approach results in timely processing of Nowcast workflows under different infrastructure configurations and network conditions. We also show how workflow task clustering choices affect throughput of an ensemble of Nowcast workflows with improved turnaround times. Additionally, we find that using our network-centric platform powered by advanced layer2 networking techniques results in faster, more reliable data throughput, makes cloud resources easier to provision, and the workflows easier to configure for operational use and automation.« less