skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Exploring Microbiome Functional Dynamics through Space and Time with Trait-Based Theory
ABSTRACT Microbiomes play essential roles in the health and function of animal and plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based approaches with ecological theory can facilitate the prediction of microbial functional traits important for ecosystem functioning and health. In particular, the yield-acquisition-stress (Y-A-S) framework considers dominant microbial life history strategies across gradients of resource availability and stress. However, microbiomes are dynamic, and spatial and temporal shifts in taxonomic and trait composition can affect ecosystem functions. We posit that extending the Y-A-S framework to microbiomes during succession and across biogeographic gradients can lead to generalizable rules for how microbiomes and their functions respond to resources and stress across space, time, and diverse ecosystems. We demonstrate the potential of this framework by applying it to the microbiomes hosted by the carnivorous pitcher plant Sarracenia purpurea , which have clear successional trajectories and are distributed across a broad climatic gradient.  more » « less
Award ID(s):
2025250 2025262 1757324 2025337
NSF-PAR ID:
10309814
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Shade, Ashley
Date Published:
Journal Name:
mSystems
Volume:
6
Issue:
4
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shade, A.L. (Ed.)
    Microbiomes play essential roles in the health and function of animal and plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based approaches with ecological theory can facilitate the prediction of microbial functional traits important for ecosystem functioning and health. In particular, the yield-acquisition-stress (Y-A-S) framework considers dominant microbial life history strategies across gradients of resource availability and stress. However, microbiomes are dynamic, and spatial and temporal shifts in taxonomic and trait composition can affect ecosystem functions. We posit that extending the Y-A-S framework to microbiomes during succession and across biogeographic gradients can lead to generalizable rules for how microbiomes and their functions respond to resources and stress across space, time, and diverse ecosystems. We demonstrate the potential of this framework by applying it to the microbiomes hosted by the carnivorous pitcher plant Sarracenia purpurea, which have clear successional trajectories and are distributed across a broad climatic gradient. 
    more » « less
  2. Abstract

    Environmental stress is increasing worldwide, yet we lack a clear picture of how stress disrupts the stability of microbial communities and the ecosystem services they provide. Here, we present the first evidence that naturally-occurring microbiomes display network properties characteristic of unstable communities when under persistent stress. By assessing changes in diversity and structure of soil microbiomes along 40 replicate stress gradients (elevation/water availability gradients) in the Florida scrub ecosystem, we show that: (1) prokaryotic and fungal diversity decline in high stress, and (2) two network properties of stable microbial communities—modularity and negative:positive cohesion—have a clear negative relationship with environmental stress, explaining 51–78% of their variation. Interestingly, pathogenic taxa/functional guilds decreased in relative abundance along the stress gradient, while oligotrophs and mutualists increased, suggesting that the shift in negative:positive cohesion could result from decreasing negative:positive biotic interactions consistent with the predictions of the Stress Gradient Hypothesis. Given the crucial role microbiomes play in ecosystem functions, our results suggest that, by limiting the compartmentalization of microbial associations and creating communities dominated by positive associations, increasing stress in the Anthropocene could destabilize microbiomes and undermine their ecosystem services.

     
    more » « less
  3. Abstract

    Anthropogenic habitat fragmentation—the breaking up of natural landscapes—is a pervasive threat to biodiversity and ecosystem function world‐wide. Fragmentation results in a mosaic of remnant native habitat patches embedded in human‐modified habitat known as the ‘matrix’. By introducing novel environmental conditions in matrix habitats and reducing connectivity of native habitats, fragmentation can dramatically change how organisms experience their environment. The effects of fragmentation can be especially important in urban landscapes, which are expanding across the globe. Despite this surging threat and the importance of microbiomes for ecosystem services, we know very little about how fragmentation affects microbiomes and even less about their consequences for plant–microbe interactions in urban landscapes.

    By combining field surveys, microbiome sequencing and experimental mesocosms, we (1) investigated how microbial community diversity, composition and functional profiles differed between 15 native pine rockland fragments and the adjacent urban matrix habitat, (2) identified habitat attributes that explained significant variation in microbial diversity of native core habitat compared to urban matrix and (3) tested how changes in urbanized and low connectivity microbiomes affected plant community productivity.

    We found urban and native microbiomes differed substantively in diversity, composition and functional profiles, including symbiotic fungi decreasing 81% and pathogens increasing 327% in the urban matrix compared to native habitat. Furthermore, fungal diversity rapidly declined as native habitats became increasingly isolated, with ~50% of variation across the landscape explained by habitat connectivity alone. Interestingly, microbiomes from native habitats increased plant productivity by ~300% while urban matrix microbiomes had no effect, suggesting that urbanization may decouple beneficial plant–microbe interactions. In addition, microbial diversity within native habitats explained significant variation in plant community productivity, with higher productivity linked to more diverse microbiomes from more connected, larger fragments.

    Synthesis. Taken together, our study not only documents significant changes in microbial diversity, composition and functions in the urban matrix, but also supports that two aspects of habitat fragmentation—the introduction of a novel urban matrix and reduced habitat connectivity—disrupt microbial effects on plant community productivity, highlighting preservation of native microbiomes as critical for productivity in remnant fragments.

     
    more » « less
  4. Plant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweedLemna minor, we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal. Our results revealed that the addition of predators increased plant population size and phosphorus removal, whereas the addition of parasites showed the opposite pattern. The structural equation modelling further pointed out that predation and parasitism affected plant population size and ecosystem function via distinct mechanisms that were both mediated by microbiomes. Our results highlight the importance of understanding microbial trophic interactions for predicting the outcomes and ecosystem impacts of plant–microbiome symbiosis.

     
    more » « less
  5. Abstract

    Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change.

     
    more » « less