skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental and computational investigations of TiIrB: a new ternary boride with Ti 1+x Rh 2−x+y Ir 3−y B 3 -type structure
Abstract A new ternary phase, TiIrB, was synthesized by arc-melting of the elements and characterized by powder X-ray diffraction. The compound crystallizes in the orthorhombic Ti 1+ x Rh 2− x + y Ir 3− y B 3 structure type, space group Pbam (no. 55) with the lattice parameters a  = 8.655(2), b  = 15.020(2), and c  = 3.2271(4) Å. Density Functional Theory (DFT) calculations were carried out to understand the electronic structure, including a Bader charge analysis. The charge distribution of TiIrB in the Ti 1+ x Rh 2− x + y Ir 3− y B 3 -type phase has been evaluated for the first time, and the results indicate that more electron density is transferred to the boron atoms in the zigzag B 4 units than to isolated boron atoms.  more » « less
Award ID(s):
1654780
PAR ID:
10309830
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Zeitschrift für Naturforschung B
Volume:
76
Issue:
10-12
ISSN:
0932-0776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn. 
    more » « less
  2. null (Ed.)
    A ternary derivative of Li 3 Bi with the composition Li 3– x – y In x Bi ( x  ≃ 0.14, y  ≃ 0.29) was produced by a mixed In+Bi flux approach. The crystal structure adopts the space group Fd \overline{3} m (No. 227), with a = 13.337 (4) Å, and can be viewed as a 2 × 2 × 2 superstructure of the parent Li 3 Bi phase, resulting from a partial ordering of Li and In in the tetrahedral voids of the Bi fcc packing. In addition to the Li/In substitutional disorder, partial occupation of some Li sites is observed. The Li deficiency develops to reduce the total electron count in the system, counteracting thereby the electron doping introduced by the In substitution. First-principles calculations confirm the electronic rationale of the observed disorder. 
    more » « less
  3. Na-ion conducting solid electrolytes can enable both the enhanced safety profile of all-solid-state-batteries and the transition to an earth-abundant charge-carrier for large-scale stationary storage. In this work, we developed new perovskite-structured Na-ion conductors from the analogous fast Li-ion conducting Li 3 x La 2/3− x TiO 3 (LLTO), testing strategies of chemo-mechanical and defect engineering. Na x La 2/3−1/3 x ZrO 3 (NLZ) and Na x La 1/3−1/3 x Ba 0.5 ZrO 3 (NLBZ) were prepared using a modified Pechini method with varying initial stoichiometries and sintering temperatures. With the substitution of larger framework cations Zr 4+ and Ba 2+ on B- and A-sites respectively, NLZ and NLBZ both had larger lattice parameters compared to LLTO, in order to accommodate and potentially enhance the transport of larger Na ions. Additionally, we sought to introduce Na vacancies through (a) sub-stoichiometric Na : La ratios, (b) Na loss during sintering, and (c) donor doping with Nb. AC impedance spectroscopy and DC polarization experiments were performed on both Na 0.5 La 0.5 ZrO 3 and Na 0.25 La 0.25 Ba 0.5 ZrO 3 in controlled gas environments (variable oxygen partial pressure, humidity) at elevated temperatures to quantify the contributions of various possible charge carriers (sodium ions, holes, electrons, oxygen ions, protons). Our results showed that the lattice-enlarged NLZ and NLBZ exhibited ∼19× (conventional sintering)/49× (spark plasma sintering) and ∼7× higher Na-ion conductivities, respectively, compared to unexpanded Na 0.42 La 0.525 TiO 3 . Moreover, the Na-ion conductivity of Na 0.5 La 0.5 ZrO 3 is comparable with that of NaNbO 3 , despite having half the carrier concentration. Additionally, more than 96% of the total conductivity in dry conditions was contributed by sodium ions for both compositions, with negligible electronic conductivity and little oxygen ion conductivity. We also identified factors that limited Na-ion transport: NLZ and NLBZ were both challenging to densify using conventional sintering without the loss of Na because of its volatility. With spark plasma sintering, higher density can be achieved. In addition, the NLZ perovskite phase appeared unable to accommodate significant Na deficiency, whereas NLBZ allowed some. Density functional theory calculations supported a thermodynamic limitation to creation of Na-deficient NLZ in favor of a pyrochlore-type phase. Humid environments generated different behavior: in Na 0.25 La 0.25 Ba 0.5 ZrO 3 , incorporated protons raised total conductivity, whereas in Na 0.5 La 0.5 ZrO 3 , they lowered total conductivity. Ultimately, this systematic approach revealed both effective approaches and limitations to achieving super-ionic Na-ion conductivity, which may eventually be overcome through alternative processing routes. 
    more » « less
  4. Abstract In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal. 
    more » « less
  5. Abstract The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2(Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2with B(CH3)3and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones. 
    more » « less