skip to main content

Title: Adaptive Fuzzy-Based Models for Attenuation Time Series Forecasting
This work proposes an Adaptive Fuzzy Prediction (AFP) method for the attenuation time series in Commercial Microwave links (CMLs). Time-series forecasting models regularly rely on the assumption that the entire data set follows the same Data Generating Process (DGP). However, the signals in wireless microwave links are severely affected by the varying weather conditions in the channel. Consequently, the attenuation time series might change its characteristics significantly at different periods. We suggest an adaptive framework to better employ the training data by grouping sequences with related temporal patterns to consider the non-stationary nature of the signals. The focus in this work is two-folded. The first is to explore the integration of static data of the CMLs as exogenous variables for the attenuation time series models to adopt diverse link characteristics. This extension allows to include various attenuation datasets obtained from additional CMLs in the training process and dramatically increasing available training data. The second is to develop an adaptive framework for short-term attenuation forecasting by employing an unsupervised fuzzy clustering procedure and supervised learning models. We empirically analyzed our framework for model and data-driven approaches with Recurrent Neural Network (RNN) and Autoregressive Integrated Moving Average (ARIMA) variations. We evaluate the more » proposed extensions on real-world measurements collected from 4G backhaul networks, considering dataset availability and the accuracy for 60 seconds prediction. We show that our framework can significantly improve conventional models’ accuracy and that incorporating data from various CMLs is essential to the AFP framework. The proposed methods have been shown to enhance the forecasting model’s performance by 30 − 40%, depending on the specific model and the data availability. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)
Dec 2021
Sponsoring Org:
National Science Foundation
More Like this
  1. The signals of microwave links used for wireless communications are prone to attenuation that can be significant due to rain. This attenuation may limit the capacity of the communication channel and cause irreversible damage. Accurate prediction of the attenuation opens the possibility to take appropriate actions to minimize such damage. In this paper, we present the use of the Long Short Time Memory (LSTM) machine learning method for short term prediction of the attenuation in commercial microwave links (CMLs), where only past measurements of the attenuation in a given link are used to predict future attenuation, with no side information. We demonstrate the operation of the proposed method on real-data signal level measurements of CMLs during rain events in Sweden. Moreover, this method is compared to a widely used statistical method for time series forecasting, the Auto-Regression Moving Average (ARIMA). The results show that learning patterns from previous attenuation values during rain events in a given CM
  2. Wireless x-haul networks rely on microwave and millimeter-wave links between 4G and/or 5G base-stations to support ultra-high data rate and ultra-low latency. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoderdecoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the base-stations sharing the network and preventing transient congestion that may be caused by re-routing. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with highmore »accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances« less
  3. Software traceability establishes and leverages associations between diverse development artifacts. Researchers have proposed the use of deep learning trace models to link natural language artifacts, such as requirements and issue descriptions, to source code; however, their effectiveness has been restricted by availability of labeled data and efficiency at runtime. In this study, we propose a novel framework called Trace BERT (T-BERT) to generate trace links between source code and natural language artifacts. To address data sparsity, we leverage a three-step training strategy to enable trace models to transfer knowledge from a closely related Software Engineering challenge, which has a rich dataset, to produce trace links with much higher accuracy than has previously been achieved. We then apply the T-BERT framework to recover links between issues and commits in Open Source Projects. We comparatively evaluated accuracy and efficiency of three BERT architectures. Results show that a Single-BERT architecture generated the most accurate links, while a Siamese-BERT architecture produced comparable results with significantly less execution time. Furthermore, by learning and transferring knowledge, all three models in the framework outperform classical IR trace models. On the three evaluated real-word OSS projects, the best T-BERT stably outperformed the VSM model with average improvements ofmore »60.31% measured using Mean Average Precision (MAP). RNN severely underperformed on these projects due to insufficient training data, while T-BERT overcame this problem by using pretrained language models and transfer learning.« less
  4. Our goal in this work is to build effective yet robust models to predict unreliable and inconsistent in-kind donations at both weekly and monthly levels for two food banks across coasts: the Food Bank of Central Eastern North Carolina in North Carolina and Los Angeles Regional Food Bank in California. We explore three factors: model, data length, and window type. For the model, we evaluate a series of classic time-series forecasting models against the state-of-the-art approaches such as Bayesian Structural Time Series modeling (BSTS) and deep learning models; for the data length, we vary training data from 2 weeks to 13 years; for the window type, we compare sliding vs. expanding. Our results show the effectiveness of different models heavily depends on the data length and the window type as well as characteristics of the food bank. Motivated by these findings, we investigate the effectiveness of employing an average of all predictions formed by considering all three factors at both monthly and weekly levels for both food banks. Our results show that this average of predictions significantly and consistently outperforms all classical models, deep learning, and BSTS for the donation prediction at both monthly and weekly levels for both foodmore »banks.« less
  5. Abstract

    In this paper, a method for real-time forecasting of the dynamics of structures experiencing nonstationary inputs is described. This is presented as time series predictions across different timescales. The target applications include hypersonic vehicles, space launch systems, real-time prognostics, and monitoring of high-rate and energetic systems. This work presents numerical analysis and experimental results for the real-time implementation of a Fast Fourier Transform (FFT)-based approach for time series forecasting. For this preliminary study, a testbench structure that consists of a cantilever beam subjected to nonstationary inputs is used to generate experimental data. First, the data is de-trended, then the time series data is transferred into the frequency domain, and measures for frequency, amplitude, and phase are obtained. Thereafter, select frequency components are collected, transformed back to the time domain, recombined, and then the trend in the data is restored. Finally, the recombined signals are propagated into the future to the selected prediction horizon. This preliminary time series forecasting work is done offline using pre-recorded experimental data, and the FFT-based approach is implemented in a rolling window configuration. Here learning windows of 0.1, 0.5, and 1 s are considered with different computation times simulated. Results demonstrate that the proposed FFT-basedmore »approach can maintain a constant prediction horizon at 1 s with sufficient accuracy for the considered system. The performance of the system is quantified using a variety of metrics. Computational speed and prediction accuracy as a function of training time and learning window lengths are examined in this work. The algorithm configuration with the shortest learning window (0.1 s) is shown to converge faster following the nonstationary when compared to algorithm configuration with longer learning windows.

    « less