Coastal dunes are globally recognized as natural features that can enhance coastal resilience and protection from wave events, storm surges, coastal flooding, and longer- term sea level rise. As a result, dune restoration is being increasingly used along urban and natural coasts as an adaptation option for climate change. However, information on the performance of restored dunes in response to extreme events is limited. On urban beaches where management includes grooming, dunes are often degraded or absent, leaving coastal communities more vulnerable to flooding and erosion during storms and wave events. Following an extreme wave surge event in December 2023, we compared the performance of a small (1.2 hectare) pilot dune restoration on an intensively groomed urban beach in southern California to an adjacent mechanically groomed control site. We used total water level (wave setup, tide, wave runup) as a proxy for flooding potential. The average wave runup incursion distance was extended 13.6 m farther inland on the groomed control site compared to the dune restoration site. This result demonstrates the potential for restored dunes to enhance flood protection and the potential for increasing coastal resilience using nature-based solutions on urban beaches. 
                        more » 
                        « less   
                    
                            
                            Engineered coastal berm-dune renourishment in New Jersey: can coastal communities continue to hold the line?
                        
                    
    
            Following the significant coastal changes caused by Hurricane Sandy in 2012, engineered berm-dunes were constructed along the New Jersey coastline to enhance protection from future storms. Following construction, property values on Long Beach Island, NJ, increased in three beachfront communities. The projects were financed entirely through federal disaster assistance, but the percentage of future maintenance costs must be covered by local communities. Whether communities are willing or capable of financially contributing to maintenance remains unclear because (i) some homeowners prefer ocean views over the protection afforded by the berm-dune structures, and (ii) stakeholder risk perceptions can change over time. To investigate the relationships between berm-dune geometries, values of coastal protection, and ocean view values, we developed a geo-economic model of the natural and anthropogenic processes that shape beach and dune morphology. The model results suggest that coastal communities may exhibit significant differences in their capabilities to maintain engineered dunes depending on stakeholder wealth and risk perception. In particular, communities with strong preferences for ocean views are less likely to maintain large-scale berm-dune structures over the long term. If these structures are abandoned, the vulnerability of the coast to future storms will increase. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1518503
- PAR ID:
- 10309872
- Date Published:
- Journal Name:
- Anthropocene Coasts
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2561-4150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Restoration of coastal dunes following tropical storm events often requires renourishment of sand substrate dredged from offshore sources, although dredging has well‐described negative ecological impacts and high economic costs. As a potential solution, recycled glass sand (cullet) made from crushed glass bottles has been proposed as a potential replacement for dredging. However, glass sand substrates may have limited ability to provide support to coastal plant communities due to the absence of native soil microbial communities. To explore the potential use of glass sand as a substrate for dune plants in the Northern Gulf of Mexico, we compared the growth of Sea oats (Uniola paniculata), Beach morning‐glory (Ipomoea imperati), and Railroad vine (I. pes‐caprae) in glass sand to growth in live beach sand. To determine if inoculation of glass sand with native soil microbial communities improved survival, growth, and biomass production, we also tested plant growth in glass sand with native microbial amendments. Overall, we found no difference in the survival of the three dune species across three soil treatments and weak differences in plant growth and biomass production across our soil substrates. Our results suggest that glass sand substrates may be a viable option for coastal dune restoration, with limited differences between live beach sand, glass sand, and glass sand inoculated with native soil microbes. Restoration and replenishment of coastal dunes using glass sand as a substrate following tropical storms or sea‐level rise may allow coastal managers to reduce the economic and ecological damage associated with offshore sediment dredging.more » « less
- 
            Coastal dunes are globally recognized as natural features that can be important adaptation approaches for climate change along urban and natural shores. We evaluated the recovery of coastal dunes on an intensively groomed urban beach in southern California over a six-year period after grooming was discontinued. Restoration actions were minimal and included installation of three sides of perimeter sand fencing, cessation of mechanical grooming and driving, and the addition of seeds of native dune plants. To track recovery, we conducted physical and biological surveys of the restoration site and an adjacent control site (groomed beach) using metrics including sand accretion, elevation, foredune and hummock formation, vegetation recovery, and wildlife use. Sediment accretion, elevation, and geomorphic complexity increased over time in the restoration site, largely in association with sand fencing and dune vegetation. A foredune ridge (maximum elevation increase of 0.9 m) and vegetated hummocks developed, along with a general increase in elevation across the restoration site (0.3 m). After six years, an estimated total volume of approximately 1,730 m3of sand had accreted in the restoration site and 540 m3of sand had accreted in the foredune ridge. Over the same period, more than a meter of sediment (vertical elevation change) accumulated along the perimeter sand fencing. Groomed control areas remained flat and uniform. The total cover of vegetation in the restoration site increased over time to a maximum of approximately 7% cover by the sixth year. No vegetation was observed on the groomed control site. Native plant species formed distinct zones across the restoration site beginning by the second year and increasing over time, with dune forming species aggregating closest to the ocean in association with the incipient foredune ridge. Ecological functions observed in the restoration area included presence of dune invertebrates, shorebird roosting, and use by a breeding federally threatened shorebird, the western snowy plover (Charadrius nivosus nivosus). Our findings on geomorphic and ecological responses of a pilot dune restoration on a heavily groomed urban beach provide new insights on the opportunities and expectations for restoring dunes as nature-based solutions for climate adaptation on urban shorelines.more » « less
- 
            Tropical Storm Eta impacted the coast of west-central Florida from 11 November to 12 November 2020 and generated high waves over elevated water levels for over 20 hours. A total of 148 beach and nearshore profiles, spaced about 300 m (984 ft) apart, were surveyed one to two weeks before and one to eight days after the storm to examine the beach changes along four barrier islands, including Sand Key, Treasure Island, Long Key, and Mullet Key. The high storm waves superimposed on elevated water level reached the toe of dunes or seawalls and caused dune erosion and overwash at various places. Throughout most of the coast, the dune, dry beach, and nearshore area was eroded and most of the sediment was deposited on the seaward slope of the nearshore bar, resulting in a roughly conserved sand volume above closure depth. The longshore variation of beach-profile volume loss demonstrates an overall southward decreasing trend, mainly due to a southward decreasing nearshore wave height as controlled by offshore bathymetry and shoreline configurations. The Storm Erosion Index (SEI) developed by Miller and Livermont (2008) captured the longshore variation of beach-profile volume loss reasonably well. The longshore variation of breaking wave height is the dominant factor controlling the longshore changes of SEI and beach erosion. Temporal variation of water level also played a significant role, while beach berm elevation was a minor factor. Although wider beaches tended to experience more volume loss from TS Eta due to the availability of sediment, they were effective in protecting the back beach and dune area from erosion. On the other hand, smaller profile-volume loss from narrow beach did not necessarily relate to less dune/ structure damage. The opposite is often true. Accurate evaluation of a storm’s severity in terms of erosion potential would benefit beach management especially under the circumstance of increasing storm activities due to climate change.more » « less
- 
            Tropical cyclones and other extreme coastal storms cause widespread interruption and damage to meteorological and hydrological measurement stations exactly when researchers need them most. There is a longstanding need to collect collocated and synchronized measurements in areas where storms severely damage civil/coastal infrastructure. To fill this observational gap, researchers led by author Masters developed a state-of-the-art monitoring station called a “Sentinel.” Sentinels are intended for temporary installation on the beach between the mean tidal datum and the sand dunes and are engineered to operate in and measure extreme wind, storm surge, wave, and hazardous water quality conditions. They are envisioned as a shared-use resource—a hardened IoT (Internet of Things) platform set up in the right place at the right time to study wind and wave loads, coastal erosion and morphology changes, water quality, and other processes during extreme coastal storms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    