The paper develops datasets and methods to assess student participation in real-life collaborative learning environments. In collaborative learning environments, students are organized into small groups where they are free to interact within their group. Thus, students can move around freely causing issues with strong pose variation, move out and re-enter the camera scene, or face away from the camera. We formulate the problem of assessing student participation into two subproblems: (i) student group detection against strong background interference from other groups, and (ii) dynamic participant tracking within the group. A massive independent testing dataset of 12,518,250 student label instances, of total duration of 21 hours and 22 minutes of real-life videos, is used for evaluating the performance of our proposed method for student group detection. The proposed method of using multiple image representations is shown to perform equally or better than YOLO on all video instances. Over the entire dataset, the proposed method achieved an F1 score of 0.85 compared to 0.80 for YOLO. Following student group detection, the paper presents the development of a dynamic participant tracking system for assessing student group participation through long video sessions. The proposed dynamic participant tracking system is shown to perform exceptionally well, missing a student in just one out of 35 testing videos. In comparison, a stateof- the-art method fails to track students in 14 out of the 35 testing videos. The proposed method achieves 82.3% accuracy on an independent set of long, real-life collaborative videos.
more »
« less
Long-term Human Video Activity Quantification of Student Participation
Research on video activity recognition has been primarily focused on differentiating among many diverse activities defined using short video clips. In this paper, we introduce the problem of reliable video activity recognition over long videos to quantify student participation in collaborative learning environments (45 minutes to 2 hours). Video activity recognition in collaborative learning environments contains several unique challenges. We introduce participation maps that identify how and when each student performs each activity to quantify student participation. We present a family of low-parameter 3D ConvNet architectures to detect these activities. We then apply spatial clustering to identify each participant and generate student participation maps using the resulting detections. We demonstrate the effectiveness by training over about 1,000 3-second samples of typing and writing and test our results over ten video sessions of about 10 hours. In terms of activity detection, our methods achieve 80% accuracy for writing and typing that match the recognition performance of TSN, SlowFast, Slowonly, and I3D trained over the same dataset while using 1200x to 1500x fewer parameters. Beyond traditional video activity recognition methods, our video activity participation maps identify how each student participates within each group.
more »
« less
- PAR ID:
- 10310078
- Date Published:
- Journal Name:
- 2021 Asilomar Conference on Signals, Systems, and Computers.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a new method to detect student group interactions in collaborative learning videos. We consider the following video activities: (i) human to human, (ii) human to others, and (iii) lack of any interaction. The system uses multidimensional AM-FM methods to detect student faces, hair, and then use the results to detect possible interactions. We use dynamic graphs to represent group interactions within each video.We tested our methods with 15 videos and achieved an 84% accuracy for students facing the camera and 76% for students facing both towards and away from the camera.more » « less
-
Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)Human activity recognition (HAR) using machine learning has shown tremendous promise in detecting construction workers’ activities. HAR has many applications in human-robot interaction research to enable robots’ understanding of human counterparts’ activities. However, many existing HAR approaches lack robustness, generalizability, and adaptability. This paper proposes a transfer learning methodology for activity recognition of construction workers that requires orders of magnitude less data and compute time for comparable or better classification accuracy. The developed algorithm transfers features from a model pre-trained by the original authors and fine-tunes them for the downstream task of activity recognition in construction. The model was pre-trained on Kinetics-400, a large-scale video-based human activity recognition dataset with 400 distinct classes. The model was fine-tuned and tested using videos captured from manual material handling (MMH) activities found on YouTube. Results indicate that the fine-tuned model can recognize distinct MMH tasks in a robust and adaptive manner which is crucial for the widespread deployment of collaborative robots in construction.more » « less
-
Accurate modeling of student knowledge is essential for large-scale online learning systems that are increasingly used for student training. Knowledge tracing aims to model student knowledge state given the student's sequence of learning activities. Modern Knowledge tracing (KT) is usually formulated as a supervised sequence learning problem to predict students' future practice performance according to their past observed practice scores by summarizing student knowledge state as a set of evolving hidden variables. Because of this formulation, many current KT solutions are not fit for modeling student learning from non-assessed learning activities with no explicit feedback or score observation (e.g., watching video lectures that are not graded). Additionally, these models cannot explicitly represent the dynamics of knowledge transfer among different learning activities, particularly between the assessed (e.g., quizzes) and non-assessed (e.g., video lectures) learning activities. In this paper, we propose Transition-Aware Multi-activity Knowledge Tracing (TAMKOT), which models knowledge transfer between learning materials, in addition to student knowledge, when students transition between and within assessed and non-assessed learning materials. TAMKOT is formulated as a deep recurrent multi-activity learning model that explicitly learns knowledge transfer by activating and learning a set of knowledge transfer matrices, one for each transition type between student activities. Accordingly, our model allows for representing each material type in a different yet transferrable latent space while maintaining student knowledge in a shared space. We evaluate our model on three real-world publicly available datasets and demonstrate TAMKOT's capability in predicting student performance and modeling knowledge transfer.more » « less
-
Face recognition in collaborative learning videos presents many challenges. In collaborative learning videos, students sit around a typical table at different positions to the recording camera, come and go, move around, get partially or fully occluded. Furthermore, the videos tend to be very long, requiring the development of fast and accurate methods. We develop a dynamic system of recognizing participants in collaborative learning systems. We address occlusion and recognition failures by using past information about the face detection history. We address the need for detecting faces from different poses and the need for speed by associating each participant with a collection of prototype faces computed through sampling or K-means clustering. Our results show that the proposed system is proven to be very fast and accurate. We also compare our system against a baseline system that uses InsightFace [2] and the original training video segments. We achieved an average accuracy of 86.2% compared to 70.8% for the baseline system. On average, our recognition rate was 28.1 times faster than the baseline system.more » « less
An official website of the United States government

