skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of fluid flow in the dynamics of active nematic defects
Abstract We adapt the Halperin–Mazenko formalism to analyze two-dimensional active nematics coupled to a generic fluid flow. The governing hydrodynamic equations lead to evolution laws for nematic topological defects and their corresponding density fields. We find that ±1/2 defects are propelled by the local fluid flow and by the nematic orientation coupled with the flow shear rate. In the overdamped and compressible limit, we recover the previously obtained active self-propulsion of the +1/2 defects. Non-local hydrodynamic effects are primarily significant for incompressible flows, for which it is not possible to eliminate the fluid velocity in favor of the local defect polarization alone. For the case of two defects with opposite charge, the non-local hydrodynamic interaction is mediated by non-reciprocal pressure-gradient forces. Finally, we derive continuum equations for a defect gas coupled to an arbitrary (compressible or incompressible) fluid flow.  more » « less
Award ID(s):
1938187
PAR ID:
10310108
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
New Journal of Physics
Volume:
23
Issue:
3
ISSN:
1367-2630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the active flow around isolated defects and the self-propulsion velocity of + 1 / 2 defects in an active nematic film with both viscous dissipation (with viscosity η ) and frictional damping Γ with a substrate. The interplay between these two dissipation mechanisms is controlled by the hydrodynamic dissipation length ℓ d = η / Γ that screens the flows. For an isolated defect, in the absence of screening from other defects, the size of the shear vorticity around the defect is controlled by the system size R . In the presence of friction that leads to a finite value of ℓ d , the vorticity field decays to zero on the lengthscales larger than ℓ d . We show that the self-propulsion velocity of + 1 / 2 defects grows with R in small systems where R < ℓ d , while in the infinite system limit or when R ≫ ℓ d , it approaches a constant value determined by ℓ d . 
    more » « less
  2. We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines. Published by the American Physical Society2024 
    more » « less
  3. We study emergent dynamics in a viscous drop subject to interfacial nematic activity. Using hydrodynamic simulations, we show how the interplay of nematodynamics, activity-driven flows in the fluid bulk, and surface deformations gives rise to a sequence of self-organized behaviors of increasing complexity, from periodic braiding motions of topological defects to chaotic defect dynamics and active turbulence, along with spontaneous shape changes and translation. Our findings recapitulate qualitative features of experiments and shed light on the mechanisms underpinning morphological dynamics in active interfaces. 
    more » « less
  4. A patterned surface defect of strength m = +1 and its associated disclination lines can decompose into a pair of surface defects and disclination lines of strength m = +1/2. For a negative dielectric anisotropy liquid crystal subjected to an applied ac electric field E , these half-integer defects are observed to wobble azimuthally for E > than some threshold field and, for sufficiently large fields, to co-revolve antipodally around a central point approximately midway between the two defects. This behavior is elucidated experimentally as a function of applied field strength E and frequency ν , where the threshold field for full co-revolution scales as ν 1/2 . Concurrently, nematic electrohydrodynamic instabilities were investigated. A complete field vs. frequency “phase diagram” compellingly suggests that the induced fluctuations and eventual co-revolutions of the ordinarily static defects are coupled strongly to—and driven by—the presence of the hydrodynamic instability. The observed behaviour suggests a Lehmann-like mechanism that drives the co-revolution. 
    more » « less
  5. Topological defects are a ubiquitous phenomenon across different physical systems. A better understanding of defects can be helpful in elucidating the physical behaviors of many real materials systems. In nematic liquid crystals, defects exhibit unique optical signatures and can segregate impurities, showing their promise as molecular carriers and nano-reactors. Continuum theory and simulations have been successfully applied to link static and dynamical behaviors of topological defects to the material constants of the underlying nematic. However, further evidence and molecular details are still lacking. Here we perform molecular dynamics simulations of Gay–Berne particles, a model nematic, to examine the molecular structures and dynamics of +1/2 defects in a thin-film nematic. Specifically, we measure the bend-to-splay ratio K 3 / K 1 using two independent, indirect measurements, showing good agreement. Next, we study the annihilation event of a pair of ±1/2 defects, of which the trajectories are consistent with experiments and hydrodynamic simulations. We further examine the thermodynamics of defect annihilation in an NVE ensemble, leading us to correctly estimate the elastic modulus by using the energy conservation law. Finally, we explore effects of defect annihilation in regions of nonuniform temperature within these coarse-grained molecular models which cannot be analysed by existing continuum level simulations. We find that +1/2 defects tend to move toward hotter areas and their change of speed in a temperature gradient can be quantitatively understood through a term derived from the temperature dependence of the elastic modulus. As such, our work has provided molecular insights into structures and dynamics of topological defects, presented unique and accessible methods to measure elastic constants by inspecting defects, and proposed an alternative control parameter of defects using temperature gradient. 
    more » « less