skip to main content


Title: Perceptions of high-tech controlled environment agriculture among local food consumers: using interviews to explore sense-making and connections to good food
In recent years, new forms of high-tech controlled environment agriculture (CEA) have received increased attention and investment. These systems integrate a suite of technologies – including automation, LED lighting, vertical plant stacking, and hydroponic fertilization – to allow for greater control of temperature, humidity, carbon dioxide, oxygen, and light in an enclosed growing environment. Proponents insist that CEA can produce sustainable, nutritious, and tasty local food, particularly for the cities of the future. At the same time, a variety of critics raise concerns about its environmental impacts and energy use, high startup costs, and consumer accessibility challenges, among other issues. At this stage, however, relatively little research has explored actual consumer knowledge and attitudes related to CEA processes and products. Guided by theories of sense-making, this article draws from structured interviews with local food consumers in New York City to examine what people know and think about high-tech CEA. From there, it explores the extent to which CEA fits into consumer conceptualizations of what makes for “good food.” Key findings emphasize that significant gaps in public understanding of CEA remain, that CEA products’ success will depend on the ability of the industry to deliver on its environmental promises, and that concerns about “unnatural” aspects of CEA will need to be allayed. Given the price premium at which high-tech CEA products are currently sold, the industry’s expansion will depend in large part on its ability to convince value-oriented food consumers that the products meet the triple-bottom-line of economic, social, and environmental sustainability goals.  more » « less
Award ID(s):
1739163
NSF-PAR ID:
10310291
Author(s) / Creator(s):
Date Published:
Journal Name:
Agriculture and human values
ISSN:
1572-8366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While the tech sector has seized upon the food system as an area in which it can have a major impact, innovators within the agri-food tech domain are dogged by concerns about public acceptance of technologies that may be controversial or simply not of interest. At the same time, because they operate within an investor-dependent political economy, they must demonstrate that the public will consume the products they are creating. To both secure markets and legitimate their approaches to problem-solving, entrepreneurial innovators draw on three existing imaginaries of consumers, each of which articulates with a particular tendency they have pursued in problem-solving. Reflecting a tendency of solutionism, those promoting technologies that promise minimal processing and/or short or traceable supply chains invoke a health- and eco-conscious consumer. In keeping with technofixes, those promoting technologies of mimicry invoke a complacent consumer. Reflecting the tendency toward scientism in problem-solving and related projections of public knowledge deficits, those promoting potentially controversial technologies invoke a fearful consumer and embrace transparency to inform and assure such consumers. By promising future consumers who will willingly accept emerging technologies, each of these imaginaries seeks to resolve – for investors – potential problems of consumer acceptance generated by the particular approaches to problem-solving innovators have adopted. While STS scholars have shown how public-facing engagement exercises and policy work are often limited by deficit-driven imaginaries of the public, in these investor-facing spaces possible objections are both imagined and overcome without any interaction with actual publics. 
    more » « less
  2. Many consumers depend on the contemporaneous growth of their food resources. For example,Tanytarsus gracilentusmidges feed on algae, and because midge generation time is much longer than that of algae, individual midges benefit not just from the standing stock but also from the growth of algae during their lifespans. This implies that an intermediate consumption rate maximizes midge somatic growth: low consumption rates constrain midge growth because they do not fully utilize the available food, whereas high consumption rates suppress algal biomass growth and consequently limit future food availability. An experiment manipulating midge presence and initial algal abundance showed that midges can suppress algal growth, as measured by changes in algal gross primary production (GPP). We also found a positive relationship between GPP and midge growth. A consumer–resource model fit to the experimental data showed a hump‐shaped relationship between midge consumption rates and their somatic growth. In the model, predicted midge somatic growth rates were only positively associated with GPP when their consumption rate was below the value that optimized midge growth. Therefore, midges did not overexploit algae in the experiment. This work highlights the balance that consumers which depend on contemporaneous resource growth might have to strike between short‐term growth and future food availability, and the benefits for consumers when they ‘manage' their resources well.

     
    more » « less
  3. Accurate estimation of land use/land cover (LULC) areas is critical, especially over the semi-arid environments of the southwestern United States where water shortage and loss of rangelands and croplands are affecting the food production systems. This study was conducted within the context of providing an improved understanding of New Mexico’s (NM’s) Food–Energy–Water Systems (FEWS) at the county level. The main goal of this analysis was to evaluate the most important LULC classes for NM’s FEWS by implementing standardized protocols of accuracy assessment and providing bias-corrected area estimates of these classes. The LULC data used in the study was based on National Land Cover Database (NLCD) legacy maps of 1992, 2001, 2006, 2011, and 2016. The analysis was conducted using the cloud-based geospatial processing and modeling tools available from System for Earth Observation Data Access, Processing, and Analysis for Land Monitoring (SEPAL) of the Food and Agricultural Organization. Accuracy assessment, uncertainty analysis, and bias-adjusted area estimates were evaluated by collecting a total of 11,428 reference samples using the Open Foris Collect Earth tool that provided access to high spatial and temporal resolution images available in Google Earth. The reference samples were allocated using a stratified random sampling approach. The results showed an overall accuracy that ranged from 71%–100% in all six study counties. The user’s and producer’s accuracy of most LULC classes were about or above 80%. The obtained bias-adjusted area estimates were higher than those based on pixel counting. The bias-adjusted area estimates simultaneously showed decreasing and increasing trends in grassland and shrubland, respectively in four counties that include Curry, Roosevelt, Lea, and Eddy during the 1992–2016 period. Doña Ana county experienced increasing and decreasing trends in grassland and shrubland areas, respectively. San Juan county experienced decreasing trends in both grassland and shrubland areas. Cultivated cropland areas showed decreasing trends in three counties in southeast NM that rely on groundwater resources including Curry, Roosevelt, and Lea. Similarly, cultivated cropland areas showed increasing trends in the other three counties that rely on surface water or conjunctive use of surface and groundwater resources including San Juan, Doña Ana, and Eddy. The use of SEPAL allowed for efficient assessment and production of more accurate bias-adjusted area estimates compared to using pixel counting. Providing such information can help in understanding the behavior of NM’s food production systems including rangelands and croplands, better monitoring and characterizing NM’s FEWS, and evaluating their behavior under changing environmental and climatic conditions. More effort is needed to evaluate the ability of the NLCD data and other similar products to provide more accurate LULC area estimates at local scales. 
    more » « less
  4. With the modern age of using genetically engineered products and growing concerns about food recalls and outbreaks, businesses are looking for ways to secure their brand names and assuring consumers about food safety and quality. Recently, Blockchain has been introduced as a promising approach for increasing the visibility of the supply chain and reducing the sale of contaminated and counterfeit products. Along this line, this study discusses the capabilities of Blockchain for the collection and monitoring of product lifecycle information ranging from production, wholesale, and logistics to standards, business reputation, and certification. The particular focus of the study is to discuss the use of videogrammetry as a data collection mechanism for bringing the product lifecycle data on digital Blockchain platforms and solving the “last mile” problem and data verification issue on Blockchain platforms. A conceptual example of organic meat processing is discussed to describe the proposed procedure and show how videogrammetry in combination with RFID and fingerprints can be used to solve the data verification issue on Blockchain platforms. 
    more » « less
  5. Abstract

    There is a lack of data on resources used and food produced at urban farms. This hampers attempts to quantify the environmental impacts of urban agriculture or craft policies for sustainable food production in cities. To address this gap, we used a citizen science approach to collect data from 72 urban agriculture sites, representing three types of spaces (urban farms, collective gardens, individual gardens), in five countries (France, Germany, Poland, United Kingdom, and United States). We answered three key questions about urban agriculture with this unprecedented dataset: (1) What are its land, water, nutrient, and energy demands? (2) How productive is it relative to conventional agriculture and across types of farms? and (3) What are its contributions to local biodiversity? We found that participant farms used dozens of inputs, most of which were organic (e.g., manure for fertilizers). Farms required on average 71.6 L of irrigation water, 5.5 L of compost, and 0.53 m2 of land per kilogram of harvested food. Irrigation was lower in individual gardens and higher in sites using drip irrigation. While extremely variable, yields at well-managed urban farms can exceed those of conventional counterparts. Although farm type did not predict yield, our cluster analysis demonstrated that individually managed leisure gardens had lower yields than other farms and gardens. Farms in our sample contributed significantly to local biodiversity, with an average of 20 different crops per farm not including ornamental plants. Aside from clarifying important trends in resource use at urban farms using a robust and open dataset, this study also raises numerous questions about how crop selection and growing practices influence the environmental impacts of growing food in cities. We conclude with a research agenda to tackle these and other pressing questions on resource use at urban farms.

     
    more » « less