skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diel cycle of sea spray aerosol concentration
Abstract Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle.  more » « less
Award ID(s):
1639868
PAR ID:
10310305
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atmospheric deposition represents a major input for micronutrient trace elements (TEs) to the surface ocean and is often quantified indirectly through measurements of aerosol TE concentrations. Sea spray aerosol (SSA) dominates aerosol mass concentration over much of the global ocean, but few studies have assessed its contribution to aerosol TE loading, which could result in overestimates of “new” TE inputs. Low‐mineral aerosol concentrations measured during the U.S. GEOTRACES Pacific Meridional Transect (GP15; 152°W, 56°N to 20°S), along with concurrent towfish sampling of surface seawater, provided an opportunity to investigate this aspect of TE biogeochemical cycling. Central Pacific Ocean surface seawater Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb concentrations were combined with aerosol Na data to calculate a “recycled” SSA contribution to aerosol TE loading. Only vanadium was calculated to have a SSA contribution averaging >1% along the transect (mean of 1.5%). We derive scaling factors from previous studies on TE enrichments in the sea surface microlayer and in freshly produced SSA to assess the broader potential for SSA contributions to aerosol TE loading. Maximum applied scaling factors suggest that SSA could contribute significantly to the aerosol loading of some elements (notably V, Cu, and Pb), while for others (e.g., Fe and Al), SSA contributions largely remained <1%. Our study highlights that a lack of focused measurements of TEs in SSA limits our ability to quantify this component of marine aerosol loading and the associated potential for overestimating new TE inputs from atmospheric deposition. 
    more » « less
  2. The rapidly warming Arctic has transitioned to thinner sea ice which fractures, producing leads. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, which vary in salinity and organic and microbial community composition. A marine aerosol reference tank was deployed aboard an icebreaker to the Arctic Ocean during August–September 2018 to study SSA generated from locally collected surface waters. Aerosol generation experiments were carried out using water collected from the marginal ice zone, a human-made hole in sea ice near the North Pole, and both lead and melt pond water during an ice floe drift period. Salinity, chlorophyll a, organic carbon, nitrogen, and microbial community composition were measured. Eukaryotic plankton and bacterial abundance were elevated in experimental water from the marginal ice zone, but the relative contributions from major eukaryotic taxonomic groups varied little across the experiments. The chemical composition of individual SSA particles was analyzed using Raman microspectroscopy and computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy. Individual sea salt aerosol, primary organic aerosol, and mineral dust particles were observed. Sea salt aerosol constituted 44–95% of individual submicrometer and 68–100% of supermicrometer particles, by number, generated during each experiment. Carbon was detected in 85%, by number, of the individual sea salt particles, with visible organic coatings. Carbohydrates were detected in 72% of particles, by number, with smaller contributions from long-chain fatty acids (13%) and siliceous material (15%). SSA generated from melt pond water contained only long-chain fatty acids and siliceous material. Quantification of the ice-nucleating activity showed that locally produced SSA may define the High Arctic background ice-nucleating particle population, but cannot account for the peak atmospheric concentrations observed. As the Arctic warms, the increasing SSA emissions have a complex dependence on changing biological and physical processes. 
    more » « less
  3. The Arctic is rapidly warming and has transitioned to thinner sea ice which fractures, producing leads. Sea ice loss is expected to be increasing sea spray aerosol production in the High Arctic. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, characterized by varied salinity, microbial community, and organic composition. The concentrations, size distributions, single-particle composition, and ice-nucleating activity of the SSA experimentally-generated were measured and compared to the chemical and biological properties of the surface waters. A marine aerosol reference tank (MART) was deployed aboard the Swedish Icebreaker Oden to the high Arctic Ocean during August – September 2018 to study SSA generated from locally-collected surface water. Surface water salinity, chlorophyll-a, organic carbon, nitrogen, and microbial community composition (18s and 16s DNA-derived, flow cytometry of nano- and picoplankton) data are submitted. Experimental aerosol data submitted include type, size, mole ratio, Raman spectra, Raman type, and ice nucleating particles. High resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS) data for surface water and experimentally-generated aerosol dissolved organic matter are included . 
    more » « less
  4. Field measurements have shown that sub-micrometer sea spray aerosol (SSA) is significantly enriched in organic material, of which a large fraction has been attributed to soluble saccharides. Existing mechanistic models of SSA production struggle to replicate the observed enhancement of soluble organic material. Here, we assess the role for divalent cation mediated co-adsorption of charged surfactants and saccharides in the enrichment of soluble organic material in SSA. Using measurements of particle supersaturated hygroscopicity, we calculate organic volume fractions for molecular mimics of SSA generated from a Marine Aerosol Reference Tank. Large enhancements in SSA organic volume fractions (Xorg > 0.2) were observed for 50 nm dry diameter (dp) particles in experiments where cooperative ionic interactions were favorable (e.g., palmitic acid, Mg2+, and glucuronic acid) at seawater total organic carbon concentrations (<1.15 mM C) and ocean pH. Significantly smaller SSA organic volume fractions (Xorg < 1.5 × 10−3) were derived from direct measurements of soluble saccharide concentrations in collected SSA with dry diameters <250 nm, suggesting that organic enrichment is strongly size dependent. The results presented here indicate that divalent cation mediated co-adsorption of soluble organics to insoluble surfactants at the ocean surface may contribute to the enrichment of soluble saccharides in SSA. The extent to which this mechanism explains the observed enhancement of saccharides in nascent SSA depends strongly on the concentration, speciation, and charge of surfactants and saccharides in the sea surface microlayer. 
    more » « less
  5. Abstract Ocean waves transfer sea spray aerosol (SSA) to the atmosphere, and these SSA particles can be enriched in organic matter relative to salts compared to seawater ratios. A fundamental understanding of the factors controlling the transfer of biogenic organic matter from the ocean to the atmosphere remains elusive. Field studies that focus on understanding the connection between organic species in seawater and SSA are complicated by the numerous processes and sources affecting the composition of aerosols in the marine environment. Here, an isolated ocean–atmosphere system enables direct measurements of the sea–air transfer of different classes of biogenic organic matter over the course of two phytoplankton blooms. By measuring excitation–emission matrices of bulk seawater, the sea surface microlayer, and SSA, we investigate time series of the transfer of fluorescent species including chlorophyll-a, protein-like substances, and humic-like substances. Herein, we show the emergence of different molecular classes in SSA at specific times over the course of a phytoplankton bloom, suggesting that SSA chemical composition changes over time in response to changing ocean biological conditions. We compare the temporal behaviors for the transfer of each component, and discuss the factors contributing to differences in transfer between phases. 
    more » « less