Abstract Adaptive plasticity in thermal tolerance traits may buffer organisms against changing temperatures, making such responses of particular interest in the face of global climate change. Although population variation is integral to the evolvability of this trait, many studies inferring proxies of physiological vulnerability from thermal tolerance traits extrapolate data from one or a few populations to represent the species. Estimates of physiological vulnerability can be further complicated by methodological effects associated with experimental design. We evaluated how populations varied in their acclimation capacity (i.e., the magnitude of plasticity) for critical thermal maximum (CTmax) in two species of tailed frogs (Ascaphidae), cold‐stream specialists. We used the estimates of acclimation capacity to infer physiological vulnerability to future warming. We performed CTmax experiments on tadpoles from 14 populations using a fully factorial experimental design of two holding temperatures (8 and 15°C) and two experimental starting temperatures (8 and 15°C). This design allowed us to investigate the acute effects of transferring organisms from one holding temperature to a different experimental starting temperature, as well as fully acclimated responses by using the same holding and starting temperature. We found that most populations exhibited beneficial acclimation, where CTmax was higher in tadpoles held at a warmer temperature, but populations varied markedly in the magnitude of the response and the inferred physiological vulnerability to future warming. We also found that the response of transferring organisms to different starting temperatures varied substantially among populations, although accounting for acute effects did not greatly alter estimates of physiological vulnerability at the species level or for most populations. These results underscore the importance of sampling widely among populations when inferring physiological vulnerability, as population variation in acclimation capacity and thermal sensitivity may be critical when assessing vulnerability to future warming.
more »
« less
Diminished warming tolerance and plasticity in low-latitude populations of a marine gastropod
Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations.
more »
« less
- Award ID(s):
- 2023571
- PAR ID:
- 10310454
- Editor(s):
- Cooke, Steve
- Date Published:
- Journal Name:
- Conservation Physiology
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2051-1434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Invasive species may be more capable of adjusting to climate warming via phenotypic plasticity than native species since plasticity is thought to increase invasion success. Physiological plasticity via acclimation is one way in which organisms can adjust their thermal tolerance in response to temperature change, but few studies have addressed whether invasive species have greater thermal plasticity compared to native congeners. Here we investigated whether thermal plasticity via temperature acclimation varies between two Onthophagus dung beetle species, the non-native Onthophagus taurus and the native Onthophagus hecate, collected from both Florida and Tennessee, USA. We expected the non-native O. taurus to demonstrate greater plasticity than the native O. hecate; we also predicted that beetles from Florida would have reduced plasticity since their environment is less thermally variable. To examine thermal plasticity, we measured shifts in time until loss of function (i.e., leg mobility) following acclimation to hot or cold temperature treatments. We found that non-native O. taurus from Florida acclimated to warm temperatures, increasing time to loss of function following warm treatments; unexpectedly, O. taurus from Tennessee showed no warm acclimation ability. Onthophagus hecate did not acclimate to warm temperatures in either location. In contrast, both species showed similar levels of cold acclimation. Taken together, our results suggest that the non-native species, O. taurus, will be more capable of using physiological adjustments to respond to climate warming than the native species, O. hecate.more » « less
-
Many species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait. Here, we report the results of, to our knowledge, the first meta-analysis to examine within-species variation in thermal plasticity, using results from 20 studies (19 species) that quantified thermal acclimation capacities across 78 populations. We used meta-regression to evaluate two leading hypotheses. The climate variability hypothesis predicts that populations from more thermally variable habitats will have greater plasticity, while the trade-off hypothesis predicts that populations with the lowest heat tolerance will have the greatest plasticity. Our analysis indicates strong support for the trade-off hypothesis because populations with greater thermal tolerance had reduced plasticity. These results advance our understanding of variation in populations' susceptibility to climate change and imply that populations with the highest thermal tolerance may have limited phenotypic plasticity to adjust to ongoing climate warming.more » « less
-
Synopsis Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.more » « less
-
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species,Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait—pupal development rate—we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.more » « less
An official website of the United States government

