skip to main content


Title: Severe introduced predator impacts despite attempted functional eradication
Established non-native species can have significant impacts on native biodiversity without any possibility of complete eradication. In such cases, one management approach is functional eradication, the reduction of introduced species density below levels that cause unacceptable effects on the native community. Functional eradication may be particularly effective for species with reduced dispersal ability, which may limit rates of reinvasion from distant populations. Here, we evaluate the potential for functional eradication of introduced predatory oyster drills (Urosalpinx cinerea) using a community science approach in San Francisco Bay. We combined observational surveys, targeted removals, and a caging experiment to evaluate the effectiveness of this approach in mitigating the mortality of prey Olympia oysters (Ostrea lurida), a conservation and restoration priority species. Despite the efforts of over 300 volunteers that removed over 30,000 oyster drills, we report limited success. We also found a strong negative relationship between oyster drills and oysters, showing virtually no coexistence across eight sites. At experimental sites, there was no effect of oyster drill removal on oyster survival in a caging experiment, but strong effects of caging treatment on oyster survival (0 and 1.6% survival in open and partial cage treatments, as compared to 89.1% in predator exclusion treatments). We conclude that functional eradication of this species requires significantly greater effort and may not be a viable management strategy in this system. We discuss several possible mechanisms for this result with relevance to management for this and other introduced species. Oyster restoration efforts should not be undertaken where Urosalpinx is established or is likely to invade.  more » « less
Award ID(s):
2023571
NSF-PAR ID:
10310456
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Biological Invasions
ISSN:
1387-3547
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Losses of grasslands have been largely attributed to widespread land‐use changes, such as conversion to row‐crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non‐native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non‐native plants. In addition to the direct and indirect effects of non‐native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam‐pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non‐native invasiveBothriochloa bladhii(Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30%B. bladhiicover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non‐native species.

     
    more » « less
  2. Abstract

    Mesopredator release following top predator loss may reduce biodiversity and harm foundation species. We investigated the potential for moderate environmental changes to trigger mesopredator release by disrupting the foraging ability of top predators without affecting their abundance by performing an in situ experiment designed to isolate the magnitude of mesopredator effects on oyster reefs (Crassostrea virginica). In estuaries, fishes occupy upper trophic levels. Most are visual foragers and become less effective predators in high turbidity. Communities were 10% more diverse, fish predation was 20% higher, and oyster recruitment four times higher in low turbidity. Crab mesopredators were 10% larger and 260% more abundant in high turbidity. Caging treatments to exclude mesopredators significantly affected communities in high but not low turbidity. Oysters had 150% stronger shells in turbid areas, a known response to crabs that was indicative of higher crab abundance. These findings indicated that increased turbidity attenuated fish foraging ability without disrupting the foraging ability of mesopredators (e.g., crabs) that forage by chemoreception. Larger and more numerous crab mesopredators significantly affected oyster reef community structure as well as the survival and growth of oysters in turbid environments. In environments where apex predators and mesopredators utilize different sensory mechanisms, sensory‐mediated mesopredator release may occur when conditions affect the foraging ability of higher order predators but not their prey.

     
    more » « less
  3. Abstract

    Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can “carry over” to have long‐term effects on organism fitness. Despite the potential importance of these within‐generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re‐exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel‐cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel‐cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel‐cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context‐dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context‐dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.

     
    more » « less
  4. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT The Olympia oyster ( Ostrea lurida ) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass ( Zostera marina ) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance. 
    more » « less
  5. Abstract

    Large terrestrial herbivorous mammals (LTH‐mammals) influence plant community structure by affecting seedling establishment in mature tropical forests. Many of these LTH‐mammals frequent secondary forests, but their effects on seedling establishment in them are understudied, hindering our understanding of how LTH‐mammals influence forest regeneration in human‐modified landscapes.

    We tested the hypothesis that the strength of LTH‐mammals' effects on seedling establishment depends on landscape protection, forest successional stage and plant species' traits using a manipulative field experiment in six 1‐ha sites with varying successional age and landscape protection. In each site, we established 40 seedling plot‐pairs, with one plot excluding LTH‐mammals and one not, and monitored seedlings of 116 woody species for 26 months.

    We found significant effects of LTH‐mammal exclusion on seedling survival contingent upon the protection of forests at the landscape level and forest stage. After 26 months, survival differences between LTH‐mammal exclusion and non‐exclusion treatments were greater in protected than unprotected landscapes. Additionally, plant species' traits were related to the LTH‐mammals' differential effects, as LTH‐mammals reduced the survival of seedlings of larger‐seeded species the most. Overall, LTH‐mammals' effects translated into significant shifts in community composition as seedling communities inside and outside the exclosures diverged. Moreover, lower density and higher species diversity were found as early as 12 and 18 months outside than inside exclosures.

    Synthesis and applications.Insight into the interactions between LTH‐mammals and seedling communities in forest regeneration can be instrumental in planning effective restoration efforts. We highlight the importance of landscape protection in seedling survival and the role of LTH‐mammals in promoting seedling diversity in mature forests but also in secondary successional forests. The findings suggest that conservation efforts and possibly trophic rewilding can be important approaches for preserving diversity and influencing the trajectory of secondary tropical forest succession. However, we also caution that an overabundance of LTH‐mammals may adversely impact the pace of forest succession due to their preference for large‐seeded species. Therefore, a comprehensive wildlife management plan is indispensable. Additionally, longer term studies on LTH‐mammals are necessary to understand the effects of temporal fluctuations that are undetected in short‐term studies.

     
    more » « less