skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Severe introduced predator impacts despite attempted functional eradication
Established non-native species can have significant impacts on native biodiversity without any possibility of complete eradication. In such cases, one management approach is functional eradication, the reduction of introduced species density below levels that cause unacceptable effects on the native community. Functional eradication may be particularly effective for species with reduced dispersal ability, which may limit rates of reinvasion from distant populations. Here, we evaluate the potential for functional eradication of introduced predatory oyster drills (Urosalpinx cinerea) using a community science approach in San Francisco Bay. We combined observational surveys, targeted removals, and a caging experiment to evaluate the effectiveness of this approach in mitigating the mortality of prey Olympia oysters (Ostrea lurida), a conservation and restoration priority species. Despite the efforts of over 300 volunteers that removed over 30,000 oyster drills, we report limited success. We also found a strong negative relationship between oyster drills and oysters, showing virtually no coexistence across eight sites. At experimental sites, there was no effect of oyster drill removal on oyster survival in a caging experiment, but strong effects of caging treatment on oyster survival (0 and 1.6% survival in open and partial cage treatments, as compared to 89.1% in predator exclusion treatments). We conclude that functional eradication of this species requires significantly greater effort and may not be a viable management strategy in this system. We discuss several possible mechanisms for this result with relevance to management for this and other introduced species. Oyster restoration efforts should not be undertaken where Urosalpinx is established or is likely to invade.  more » « less
Award ID(s):
2023571
PAR ID:
10310456
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Biological Invasions
ISSN:
1387-3547
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine organisms frequently inhabit intertidal zones that serve as refuges from predation and competition but are not optimal physiologically. Restoration practitioners working with intertidal species may similarly have to consider whether restoration success will be greater where conditions are more benign (usually lower in the intertidal) or where negative biotic interactions are reduced (usually higher in the intertidal). In cases where a target species has greater desiccation tolerance than its enemies, restoration may be more successful higher in the intertidal zone, despite potential performance trade-offs. In many US West Coast estuaries, non-native drill species can decimate native oyster populations, posing a challenge to restoration. Given that native Olympia oystersOstrea luridashould be better able to withstand tidal emersion than the non-native Atlantic oyster drillUrosalpinx cinerea, we explored using the high intertidal as a refuge from predation as a potential restoration technique. Using surveys and a field experiment, we investigated the recruitment, growth, and survival of oysters as well as drill abundance and predation over 3 tidal elevations. Oysters recruited and survived equally well at +0.1, +0.5, and +0.8 m mean lower low water, but juvenile oyster growth decreased with increasing elevation. In our experiment, predation on oysters was lower at the highest elevation than at low and mid elevations, but in natural populations there was a near complete absence ofO. luridaat any elevation whereU. cinereawas present. This suggests that a higher tidal elevation refuge is not a viable approach for oyster restoration in our study area. 
    more » « less
  2. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT The Olympia oyster ( Ostrea lurida ) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass ( Zostera marina ) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance. 
    more » « less
  3. Losses of grasslands have been largely attributed to widespread land‐use changes, such as conversion to row‐crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non‐native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non‐native plants. In addition to the direct and indirect effects of non‐native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam‐pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non‐native invasiveBothriochloa bladhii(Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30%B. bladhiicover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non‐native species. 
    more » « less
  4. Abstract Inducible prey defences occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co‐occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defences. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defences. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with upregulation of calcium transport proteins that could influence biomineralization. Inducible defences evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were downregulated by both oyster populations after exposure to drills, implying a trade‐off between biomineralization and immune function. Following drill exposure, oysters from the population that co‐occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform‐specific protein expression. This trend suggests that a stronger inducible defence response evolved in oysters that co‐occur with drills through modification of an existing mechanism. 
    more » « less
  5. Background Abundance of the commercially and ecologically important Eastern oyster, Crassostrea virginica , has declined across the US Eastern and Gulf coasts in recent decades, spurring substantial efforts to restore oyster reefs. These efforts are widely constrained by the availability, cost, and suitability of substrates to support oyster settlement and reef establishment. In particular, oyster shell is often the preferred substrate but is relatively scarce and increasingly expensive. Thus, there is a need for alternative oyster restoration materials that are cost-effective, abundant, and durable. Methods We tested the viability of two low-cost substrates—concrete and recycled blue crab ( Callinectes sapidus ) traps—in facilitating oyster recovery in a replicated 22-month field experiment at historically productive but now degraded intertidal oyster grounds on northwestern Florida’s Nature Coast. Throughout the trial, we monitored areal oyster cover on each substrate; at the end of the trial, we measured the densities of oysters by size class (spat, juvenile, and market-size) and the biomass and volume of each reef. Results Oysters colonized the concrete structures more quickly than the crab traps, as evidenced by significantly higher oyster cover during the first year of the experiment. By the end of the experiment, the concrete structures hosted higher densities of spat and juveniles, while the density of market-size oysters was relatively low and similar between treatments. The open structure of the crab traps led to the development of larger-volume reefs, while oyster biomass per unit area was similar between treatments. In addition, substrates positioned at lower elevations (relative to mean sea level) supported higher oyster abundance, size, and biomass than those less frequently inundated at higher elevations. Discussion Together, these findings indicate that both concrete and crab traps are viable substrates for oyster reef restoration, especially when placed at lower intertidal elevations conducive to oyster settlement and reef development. 
    more » « less