With the explosion in Big Data, it is often forgotten that much of the data nowadays is generated at the edge. Specifically, a major source of data is users' endpoint devices like phones, smart watches, etc., that are connected to the internet, also known as the Internet-of-Things (IoT). This "edge of data" faces several new challenges related to hardware-constraints, privacy-aware learning, and distributed learning (both training as well as inference). So what systems and machine learning algorithms can we use to generate or exploit data at the edge? Can network science help us solve machine learning (ML) problems? Can IoT-devices help people who live with some form of disability and many others benefit from health monitoring? In this tutorial, we introduce the network science and ML techniques relevant to edge computing, discuss systems for ML (e.g., model compression, quantization, HW/SW co-design, etc.) and ML for systems design (e.g., run-time resource optimization, power management for training and inference on edge devices), and illustrate their impact in addressing concrete IoT applications.
Simple and Automatic Distributed Machine Learning on Ray
In recent years, the pace of innovations in the fields of machine learning (ML) has accelerated, researchers in SysML have created algorithms and systems that parallelize ML training over multiple devices or computational nodes. As ML models become more structurally complex, many systems have struggled to provide all-round performance on a variety of models. Particularly, ML scale-up is usually underestimated in terms of the amount of knowledge and time required to map from an appropriate distribution strategy to the model. Applying parallel training systems to complex models adds nontrivial development overheads in addition to model prototyping, and often results in lower-than-expected performance. This tutorial identifies research and practical pain points in parallel ML training, and discusses latest development of algorithms and systems on addressing these challenges in both usability and performance. In particular, this tutorial presents a new perspective of unifying seemingly different distributed ML training strategies. Based on it, introduces new techniques and system architectures to simplify and automate ML parallelization. This tutorial is built upon the authors' years' of research and industry experience, comprehensive literature survey, and several latest tutorials and papers published by the authors and peer researchers.
The tutorial consists of four parts. The first part will more »
- Award ID(s):
- 1730628
- Publication Date:
- NSF-PAR ID:
- 10310459
- Journal Name:
- KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
Computer scientists and programmers face the difficultly of improving the scalability of their applications while using conventional programming techniques only. As a base-line hypothesis of this paper we assume that an advanced runtime system can be used to take full advantage of the available parallel resources of a machine in order to achieve the highest parallelism possible. In this paper we present the capabilities of HPX - a distributed runtime system for parallel applications of any scale - to achieve the best possible scalability through asynchronous task execution [1]. OP2 is an active library which provides a framework for the parallel execution for unstructured grid applications on different multi-core/many-core hardware architectures [2]. OP2 generates code which uses OpenMP for loop parallelization within an application code for both single-threaded and multi-threaded machines. In this work we modify the OP2 code generator to target HPX instead of OpenMP, i.e. port the parallel simulation backend of OP2 to utilize HPX. We compare the performance results of the different parallelization methods using HPX and OpenMP for loop parallelization within the Airfoil application. The results of strong scaling and weak scaling tests for the Airfoil application on one node with up to 32 threads aremore »
-
Simulating the dynamics of ions near polarizable nanoparticles (NPs) using coarse-grained models is extremely challenging due to the need to solve the Poisson equation at every simulation timestep. Recently, a molecular dynamics (MD) method based on a dynamical optimization framework bypassed this obstacle by representing the polarization charge density as virtual dynamic variables and evolving them in parallel with the physical dynamics of ions. We highlight the computational gains accessible with the integration of machine learning (ML) methods for parameter prediction in MD simulations by demonstrating how they were realized in MD simulations of ions near polarizable NPs. An artificial neural network–based regression model was integrated with MD simulation and predicted the optimal simulation timestep and optimization parameters characterizing the virtual system with 94.3% success. The ML-enabled auto-tuning of parameters generated accurate dynamics of ions for ≈ 10 million steps while improving the stability of the simulation by over an order of magnitude. The integration of ML-enhanced framework with hybrid Open Multi-Processing / Message Passing Interface (OpenMP/MPI) parallelization techniques reduced the computational time of simulating systems with thousands of ions and induced charges from thousands of hours to tens of hours, yielding a maximum speedup of ≈ 3 from ML-onlymore »
-
Existing deep learning systems commonly parallelize deep neural network (DNN) training using data or model parallelism, but these strategies often result in suboptimal parallelization performance. We introduce SOAP, a more comprehensive search space of parallelization strategies for DNNs that includes strategies to parallelize a DNN in the Sample, Operator, Attribute, and Parameter dimensions. We present FlexFlow, a deep learning engine that uses guided randomized search of the SOAP space to find a fast parallelization strategy for a specific parallel machine. To accelerate this search, FlexFlow introduces a novel execution simulator that can accurately predict a parallelization strategy’s performance and is three orders of magnitude faster than prior approaches that execute each strategy. We evaluate FlexFlow with six real-world DNN benchmarks on two GPU clusters and show that FlexFlow increases training throughput by up to 3.3× over state-of-the-art approaches, even when including its search time, and also improves scalability.