skip to main content


Title: Coupling between long ranged repulsions and short ranged attractions in a colloidal model of zero shear rate viscosity
Award ID(s):
1803497
NSF-PAR ID:
10310560
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we analyzed an isotropic colloidal model incorporating both short-range sticky attractions and long-range electrostatic repulsions. We computed the zero-shear viscosity and second virial coefficient for a dilute colloidal suspension (i.e., pair interactions only) as a function of the strength of attractions and repulsions. We also developed an analytical approximation that allows us to better understand the coupling of the two types of interactions. The attractions and repulsions contribute to the zero-shear viscosity and second virial coefficient in different ways, leading to cases with the same second virial coefficient but different zero-shear viscosity. The analytical approximation shows that the mechanism of the coupling of interactions is that long-range repulsions can weaken the influence of short-range attractions. This effect alters how repulsions change the zero-shear viscosity. Acting independently, both attractions and repulsions increase the viscosity coefficient of the system. However, when both types of interactions are considered together, repulsions can screen the effect of attractive interactions, thereby reducing the viscosity.

     
    more » « less
  2. Generating feasible robot motions in real-time requires achieving multiple tasks (i.e., kinematic requirements) simultaneously. These tasks can have a specific goal, a range of equally valid goals, or a range of acceptable goals with a preference toward a specific goal. To satisfy multiple and potentially competing tasks simultaneously, it is important to exploit the flexibility afforded by tasks with a range of goals. In this paper, we propose a real-time motion generation method that accommodates all three categories of tasks within a single, unified framework and leverages the flexibility of tasks with a range of goals to accommodate other tasks. Our method incorporates tasks in a weighted-sum multiple-objective optimization structure and uses barrier methods with novel loss functions to encode the valid range of a task. We demonstrate the effectiveness of our method through a simulation experiment that compares it to state-of-the-art alternative approaches, and by demonstrating it on a physical camera-in-hand robot that shows that our method enables the robot to achieve smooth and feasible camera motions. 
    more » « less
  3. null (Ed.)