skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupling between long ranged repulsions and short ranged attractions in a colloidal model of zero shear rate viscosity
Award ID(s):
1803497
PAR ID:
10310560
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we analyzed an isotropic colloidal model incorporating both short-range sticky attractions and long-range electrostatic repulsions. We computed the zero-shear viscosity and second virial coefficient for a dilute colloidal suspension (i.e., pair interactions only) as a function of the strength of attractions and repulsions. We also developed an analytical approximation that allows us to better understand the coupling of the two types of interactions. The attractions and repulsions contribute to the zero-shear viscosity and second virial coefficient in different ways, leading to cases with the same second virial coefficient but different zero-shear viscosity. The analytical approximation shows that the mechanism of the coupling of interactions is that long-range repulsions can weaken the influence of short-range attractions. This effect alters how repulsions change the zero-shear viscosity. Acting independently, both attractions and repulsions increase the viscosity coefficient of the system. However, when both types of interactions are considered together, repulsions can screen the effect of attractive interactions, thereby reducing the viscosity. 
    more » « less
  2. Abstract We study non-local measures of spectral correlations and their utility in characterizing and distinguishing between the distinct eigenstate phases of quantum chaotic and many-body localized systems. We focus on two related quantities, the spectral form factor and the density of all spectral gaps, and show that they furnish unique signatures that can be used to sharply identify the two phases. We demonstrate this by numerically studying three one-dimensional quantum spin chain models with (i) quenched disorder, (ii) periodic drive (Floquet), and (iii) quasiperiodic detuning. We also clarify in what ways the signatures are universal and in what ways they are not. More generally, this thorough analysis is expected to play a useful role in classifying phases of disorder systems. 
    more » « less
  3. null (Ed.)
  4. Yielding of the particulate network in colloidal gels under applied deformation is accompanied by various microstructural changes, including rearrangement, bond rupture, anisotropy, and reformation of secondary structures. While much work has been done to understand the physical underpinnings of yielding in colloidal gels, its topological origins remain poorly understood. Here, employing a series of tools from network science, we characterize the bonds using their orientation and network centrality. We find that bonds with higher centralities in the network are ruptured the most at all applied deformation rates. This suggests that a network analysis of the particulate structure can be used to predict the failure points in colloidal gels a priori. 
    more » « less
  5. null (Ed.)