skip to main content

This content will become publicly available on December 17, 2022

Title: Tension Control in Roll-to-Roll Mechanical Peeling for 2D Material Transfer and Transfer Printing
A major challenge of the large-scale application of two-dimensional (2D) materials is the scaling up of the process for its growth and transfer. Mechanical peeling has been demonstrated to be a promising method for transferring graphene in a fast and environmentally friendly manner. However, efforts in scaling up the process have been lacking. Performing mechanical peeling using a roll-to-roll (R2R) system could significantly increase the throughput of graphene transfer. Such a R2R process does not exist in industry. In this paper a novel R2R mechanical peeling system that has both speed and tension control capabilities is presented. Controllers that control the peeling tensions on both sides of the peeling front are developed based on a tension dynamics model. Both controllers contain a feedback and a feedforward term to account for large steady-state error. The control performance is validated using both experiments and simulation, demonstrating that the R2R mechanical peeling technique can be a viable method for dry transfer of 2D materials in a high-throughput industrial setting.
Authors:
Editors:
Sreenivasan, S.V.
Award ID(s):
2041470
Publication Date:
NSF-PAR ID:
10311116
Journal Name:
2021 International Conference on Micro- and Nano-devices Enabled by R2R Manufacturing
Sponsoring Org:
National Science Foundation
More Like this
  1. Sreenivasan, S.V. (Ed.)
    A roll-to-roll (R2R) technique is especially desirable for transfer of chemical vapor deposition (CVD) graphene towards high-speed, low-cost, renewable, and environmentally friendly manufacturing of graphene-based electronic devices, such as flexible touchscreens, field effect transistors and organic solar cells. A R2R graphene dry transfer system is recently developed. Monolayer graphene is transferred from a copper growth substrate to a polymer backing layer by mechanical peeling. In this work, we present an experimental study to examine the effects of line speed of the mechanical peeling process on the transferred graphene quality. It is shown that the effect of line speed is notmore »monotonic, and an optimal speed exists to yield the highest and most consistent electrical conductivity of transferred graphene among the process conditions studied. This study provides understanding of process parameter effects and demonstrates the potential of the R2R dry transfer process for large-scale CVD graphene toward industrial applications.« less
  2. Lenders, Jos (Ed.)
    A major challenge for graphene applications is the lack of mass production technology for large-scale and high-quality graphene growth and transfer. Here, a roll-to-roll (R2R) dry transfer process for large-scale graphene grown by chemical vapor deposition is reported. The process is fast, controllable, and environmentally benign. It avoids chemical contamination and allows the reuse of graphene growth substrates. By controlling tension and speed of the R2R dry transfer process, the electrical sheet resistance is achieved as 9.5 kΩ sq−1, the lowest ever reported among R2R dry transferred graphene samples. The R2R dry transferred samples are used to fabricate graphene-based field-effectmore »transistors (GFETs) on polymer. It is demonstrated that these flexible GFETs feature a near-zero doping level and a gate leakage current one to two orders of magnitude lower than those fabricated using wet-chemical etched graphene samples. The scalability and uniformity of the R2R dry transferred graphene is further demonstrated by successfully transferring a 3 × 3 in2 sample and measuring its field-effect mobility with 36 millimeter-scaled GFETs evenly spaced on the sample. The field-effect mobility of the R2R dry transferred graphene is determined to be 205 ± 36 cm2 V−1.« less
  3. Nano-Impression Lithography (NIL) has been demonstrated to produce nano features on webs that have value to society. Such demonstrations have largely been the result of NIL processes that involve the discrete stamping of a mold with nano-impressions into a thermoplastic web or a web coated with resin that is cured during the imprint process. To scale NIL to large area products which can be produced economically requires the imprinting to occur on roll-to-roll (R2R) process machines. Nip mechanics is a topic which has been explored in relation to drive nips and winding nips in R2R machines. Nip rollers will bemore »needed to imprint webs at production speeds to ensure mold filling on an imprint roller. The objective of this paper is to demonstrate while the nip roller is required that it can also induce imperfections in the imprinted nano-features. Successful imprinting will require nip loads sufficient to fill the imprint mold and then addressing the nip mechanics which can induce shear and slip that could destroy the nano-features. The objective is to demonstrate through the study of nip mechanics that this shear and slip can be inhibited through the selection of nip materials and tension control of the web entering and exiting the nipped imprint roller.« less
  4. Abstract

    In this work, we introduce a roll-to-roll system that can continuously print three-dimensional (3D) periodic nanostructures over large areas. This approach is based on Langmuir-Blodgett assembly of colloidal nanospheres, which diffract normal incident light to create a complex intensity pattern for near-field nanolithography. The geometry of the 3D nanostructure is defined by the Talbot effect and can be precisely designed by tuning the ratio of the nanosphere diameter to the exposure wavelength. Using this system, we have demonstrated patterning of 3D photonic crystals with a 500 nm period on a 50 × 200 mm2flexible substrate, with a system throughput of 3 mm/s. The patterningmore »yield is quantitatively analyzed by an automated electron beam inspection method, demonstrating long-term repeatability of an up to 88% yield over a 4-month period. The inspection method can also be employed to examine pattern uniformity, achieving an average yield of up to 78.6% over full substrate areas. The proposed patterning method is highly versatile and scalable as a nanomanufacturing platform and can find application in nanophotonics, nanoarchitected materials, and multifunctional nanostructures.

    « less
  5. Abstract One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfermore »only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate–align–release process—without the need of an intermediate carrier substrate—is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials.« less