skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolomics revealed the influence of breast cancer on lymphatic endothelial cell metabolism, metabolic crosstalk, and lymphangiogenic signaling in co-culture
Abstract Breast cancer metastasis occurs via blood and lymphatic vessels. Breast cancer cells ‘educate’ lymphatic endothelial cells (LECs) to support tumor vascularization and growth. However, despite known metabolic alterations in breast cancer, it remains unclear how lymphatic endothelial cell metabolism is altered in the tumor microenvironment and its effect in lymphangiogenic signaling in LECs. We analyzed metabolites inside LECs in co-culture with MCF-7, MDA-MB-231, and SK-BR-3 breast cancer cell lines using $$^1\hbox {H}$$ 1 H nuclear magnetic resonance (NMR) metabolomics, Seahorse, and the spatial distribution of metabolic co-enzymes using optical redox ratio imaging to describe breast cancer-LEC metabolic crosstalk. LECs co-cultured with breast cancer cells exhibited cell-line dependent altered metabolic profiles, including significant changes in lactate concentration in breast cancer co-culture. Cell metabolic phenotype analysis using Seahorse showed LECs in co-culture exhibited reduced mitochondrial respiration, increased reliance on glycolysis and reduced metabolic flexibility. Optical redox ratio measurements revealed reduced NAD(P)H levels in LECs potentially due to increased NAD(P)H utilization to maintain redox homeostasis. $$^{13}\hbox {C}$$ 13 C -labeled glucose experiments did not reveal lactate shuttling into LECs from breast cancer cells, yet showed other $$^{13}\hbox {C}$$ 13 C signals in LECs suggesting internalized metabolites and metabolic exchange between the two cell types. We also determined that breast cancer co-culture stimulated lymphangiogenic signaling in LECs, yet activation was not stimulated by lactate alone. Increased lymphangiogenic signaling suggests paracrine signaling between LECs and breast cancer cells which could have a pro-metastatic role.  more » « less
Award ID(s):
1648035
PAR ID:
10311287
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The pathophysiology of several lymphatic diseases, such as lymphedema, depends on the function of lymphangions that drive lymph flow. Even though the signaling between the two main cellular components of a lymphangion, endothelial cells (LECs) and muscle cells (LMCs), is responsible for crucial lymphatic functions, there are no in vitro models that have included both cell types. Here, a fabrication technique (gravitational lumen patterning or GLP) is developed to create a lymphangion-chip. This organ-on-chip consists of co-culture of a monolayer of endothelial lumen surrounded by multiple and uniformly thick layers of muscle cells. The platform allows construction of a wide range of luminal diameters and muscular layer thicknesses, thus providing a toolbox to create variable anatomy. In this device, lymphatic muscle cells align circumferentially while endothelial cells aligned axially under flow, as only observed in vivo in the past. This system successfully characterizes the dynamics of cell size, density, growth, alignment, and intercellular gap due to co-culture and shear. Finally, exposure to pro-inflammatory cytokines reveals that the device could facilitate the regulation of endothelial barrier function through the lymphatic muscle cells. Therefore, this bioengineered platform is suitable for use in preclinical research of lymphatic and blood mechanobiology, inflammation, and translational outcomes. 
    more » « less
  2. The lymphatic vascular function is regulated by pulsatile shear stresses through signaling mediated by intracellular calcium [Ca 2+ ] i . Further, the intracellular calcium dynamics mediates signaling between lymphatic endothelial cells (LECs) and muscle cells (LMCs), including the lymphatic tone and contractility. Although calcium signaling has been characterized on LEC monolayers under uniform or step changes in shear stress, these dynamics have not been revealed in LMCs under physiologically-relevant co-culture conditions with LECs or under pulsatile flow. In this study, a cylindrical organ-on-chip platform of the lymphatic vessel (Lymphangion-Chip) consisting of a lumen formed with axially-aligned LECs co-cultured with transversally wrapped layers of LMCs was exposed to step changes or pulsatile shear stress, as often experienced in vivo physiologically or pathologically. Through real-time analysis of intracellular calcium [Ca 2+ ] i release, the device reveals the pulsatile shear-dependent biological coupling between LECs and LMCs. Upon step shear, both cell types undergo a relatively rapid rise in [Ca 2+ ] i followed by a gradual decay. Importantly, under pulsatile flow, analysis of the calcium signal also reveals a secondary sinusoid within the LECs and LMCs that is very close to the flow frequency. Finally, LMCs directly influence the LEC calcium dynamics both under step changes in shear and under pulsatile flow, demonstrating a coupling of LEC–LMC signaling. In conclusion, the Lymphangion-Chip is able to illustrate that intracellular calcium [Ca 2+ ] i in lymphatic vascular cells is dependent on pulsatile shear rate and therefore, serves as an analytical biomarker of mechanotransduction within LECs and LMCs, and functional consequences. 
    more » « less
  3. Mesenchymal stem cells (MSCs) that accumulate in the primary tumor due to their natural tropism for inflammatory tissues enhance the metastatic potential of tumor cells through direct interactions with tumor cells or paracrine signaling within the tumor microenvironment. MSCs also undergo senescence, which leads to increased production of pro-inflammatory cytokines and matrix-degrading enzymes. Senescence is a critical mechanism of limiting abnormal growth and cancer development through tumor suppression; however, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Increased understanding of the biophysical properties of senescent MSCs and how they mediate cell-cell interactions in the tumor may be useful in identifying novel biomarkers for senescent stromal cells in tissues or aggressive cancer cells that form in an aging stroma. A high-content single cell biophysical approach was used to define the mechanical properties of pre- and post- senescent MSCs. Our data shows post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than their pre-senescent counterparts. A robust molecular screening approach combining genome-wide microarray analysis with mass spec-based proteomics was used to establish the molecular differences in pre- and post- senescent MSCs. Our data show a consistent correlation of up and down regulated gene and peptide expression. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on breast cancer cell motility and invasion in 3D collagen gels. Post-senescent MSCs induced an invasive breast cancer cell phenotype, characterized by increased spreading of breast cancer cells in collagen, increased numbers of invading cells, and morphological elongation of breast cancer cells. Surprisingly, this invasive breast cancer cell behavior was further amplified when breast cancer cells were co-cultured with both pre- and post- senescent cells. 
    more » « less
  4. Abstract Background Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. Methods scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. Results Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. Conclusion Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo. 
    more » « less
  5. Abstract Fibroblasts are an abundant cell type in tumor microenvironments. Activated fibroblasts, known as carcinoma‐associated fibroblasts (CAFs), interact with cancer cells through biochemical signaling and render cancer cells proliferative, invasive, and resistant to therapeutics. Targeting CAFs–cancer cells interactions offers a strategy to block cancer progression. 2D and 3D co‐cultures of human mammary fibroblasts and triple negative breast cancer (TNBC) cells are used to investigate the impact of heterotypic cellular interactions on the proliferation of matrix invasion of TNBC cells. The results show that fibroblasts secreting a chemokine, CXCL12, significantly enhance proliferation of TNBC cells expressing the chemokine receptor, CXCR4. Disrupting this interaction with a receptor antagonist normalizes cancer cell proliferation to that of a co‐culture model lacking this signaling. When co‐culture spheroids are embedded in collagen, fibroblasts producing CXCL12 promote collagen invasion of TNBC cells. Although co‐cultures containing normal fibroblasts also lead to TNBC cell spreading into the matrix, a morphological analysis of cells and inhibition of chemokine‐receptor signaling shows that this spreading is due to the incompatibility of fibroblasts and cancer cells leading to the segregation of the two cell types from the spheroid. 
    more » « less