skip to main content


Title: Metabolomics revealed the influence of breast cancer on lymphatic endothelial cell metabolism, metabolic crosstalk, and lymphangiogenic signaling in co-culture
Abstract Breast cancer metastasis occurs via blood and lymphatic vessels. Breast cancer cells ‘educate’ lymphatic endothelial cells (LECs) to support tumor vascularization and growth. However, despite known metabolic alterations in breast cancer, it remains unclear how lymphatic endothelial cell metabolism is altered in the tumor microenvironment and its effect in lymphangiogenic signaling in LECs. We analyzed metabolites inside LECs in co-culture with MCF-7, MDA-MB-231, and SK-BR-3 breast cancer cell lines using $$^1\hbox {H}$$ 1 H nuclear magnetic resonance (NMR) metabolomics, Seahorse, and the spatial distribution of metabolic co-enzymes using optical redox ratio imaging to describe breast cancer-LEC metabolic crosstalk. LECs co-cultured with breast cancer cells exhibited cell-line dependent altered metabolic profiles, including significant changes in lactate concentration in breast cancer co-culture. Cell metabolic phenotype analysis using Seahorse showed LECs in co-culture exhibited reduced mitochondrial respiration, increased reliance on glycolysis and reduced metabolic flexibility. Optical redox ratio measurements revealed reduced NAD(P)H levels in LECs potentially due to increased NAD(P)H utilization to maintain redox homeostasis. $$^{13}\hbox {C}$$ 13 C -labeled glucose experiments did not reveal lactate shuttling into LECs from breast cancer cells, yet showed other $$^{13}\hbox {C}$$ 13 C signals in LECs suggesting internalized metabolites and metabolic exchange between the two cell types. We also determined that breast cancer co-culture stimulated lymphangiogenic signaling in LECs, yet activation was not stimulated by lactate alone. Increased lymphangiogenic signaling suggests paracrine signaling between LECs and breast cancer cells which could have a pro-metastatic role.  more » « less
Award ID(s):
1648035
NSF-PAR ID:
10311287
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. Methods scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. Results Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. Conclusion Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo. 
    more » « less
  2. The lymphatic vascular function is regulated by pulsatile shear stresses through signaling mediated by intracellular calcium [Ca 2+ ] i . Further, the intracellular calcium dynamics mediates signaling between lymphatic endothelial cells (LECs) and muscle cells (LMCs), including the lymphatic tone and contractility. Although calcium signaling has been characterized on LEC monolayers under uniform or step changes in shear stress, these dynamics have not been revealed in LMCs under physiologically-relevant co-culture conditions with LECs or under pulsatile flow. In this study, a cylindrical organ-on-chip platform of the lymphatic vessel (Lymphangion-Chip) consisting of a lumen formed with axially-aligned LECs co-cultured with transversally wrapped layers of LMCs was exposed to step changes or pulsatile shear stress, as often experienced in vivo physiologically or pathologically. Through real-time analysis of intracellular calcium [Ca 2+ ] i release, the device reveals the pulsatile shear-dependent biological coupling between LECs and LMCs. Upon step shear, both cell types undergo a relatively rapid rise in [Ca 2+ ] i followed by a gradual decay. Importantly, under pulsatile flow, analysis of the calcium signal also reveals a secondary sinusoid within the LECs and LMCs that is very close to the flow frequency. Finally, LMCs directly influence the LEC calcium dynamics both under step changes in shear and under pulsatile flow, demonstrating a coupling of LEC–LMC signaling. In conclusion, the Lymphangion-Chip is able to illustrate that intracellular calcium [Ca 2+ ] i in lymphatic vascular cells is dependent on pulsatile shear rate and therefore, serves as an analytical biomarker of mechanotransduction within LECs and LMCs, and functional consequences. 
    more » « less
  3. The pathophysiology of several lymphatic diseases, such as lymphedema, depends on the function of lymphangions that drive lymph flow. Even though the signaling between the two main cellular components of a lymphangion, endothelial cells (LECs) and muscle cells (LMCs), is responsible for crucial lymphatic functions, there are no in vitro models that have included both cell types. Here, a fabrication technique (gravitational lumen patterning or GLP) is developed to create a lymphangion-chip. This organ-on-chip consists of co-culture of a monolayer of endothelial lumen surrounded by multiple and uniformly thick layers of muscle cells. The platform allows construction of a wide range of luminal diameters and muscular layer thicknesses, thus providing a toolbox to create variable anatomy. In this device, lymphatic muscle cells align circumferentially while endothelial cells aligned axially under flow, as only observed in vivo in the past. This system successfully characterizes the dynamics of cell size, density, growth, alignment, and intercellular gap due to co-culture and shear. Finally, exposure to pro-inflammatory cytokines reveals that the device could facilitate the regulation of endothelial barrier function through the lymphatic muscle cells. Therefore, this bioengineered platform is suitable for use in preclinical research of lymphatic and blood mechanobiology, inflammation, and translational outcomes. 
    more » « less
  4. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescent MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression. 
    more » « less
  5. Abstract

    The goal of this study is to validate fluorescence intensity and lifetime imaging of metabolic co‐enzymes NAD(P)H and FAD (optical metabolic imaging, or OMI) as a method to quantify cell‐cycle status of tumor cells. Heterogeneity in tumor cell‐cycle status (e. g. proliferation, quiescence, apoptosis) increases drug resistance and tumor recurrence. Cell‐cycle status is closely linked to cellular metabolism. Thus, this study applies cell‐level metabolic imaging to distinguish proliferating, quiescent, and apoptotic populations. Two‐photon microscopy and time‐correlated single photon counting are used to measure optical redox ratio (NAD(P)H fluorescence intensity divided by FAD intensity), NAD(P)H and FAD fluorescence lifetime parameters. Redox ratio, NAD(P)H and FAD lifetime parameters alone exhibit significant differences (p<0.05) between population means. To improve separation between populations, linear combination models derived from partial least squares ‐ discriminant analysis (PLS‐DA) are used to exploit all measurements together. Leave‐one‐out cross validation of the model yielded high classification accuracies (92.4 and 90.1 % for two and three populations, respectively). OMI and PLS‐DA also identifies each sub‐population within heterogeneous samples. These results establish single‐cell analysis with OMI and PLS‐DA as a label‐free method to distinguish cell‐cycle status within intact samples. This approach could be used to incorporate cell‐level tumor heterogeneity in cancer drug development.magnified image

     
    more » « less