skip to main content

Title: Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples
Abstract The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes. The approach consists of combining a customized metabolomics workflow with a pulsed MS ion generation method, known as triboelectric nanogenerator inductive nanoelectrospray ionization (TENGi nanoESI) MS. Samples tested with this approach include exhaled breath condensate collected from cystic fibrosis patients as well as in vitro - cultured human mesenchymal stromal cells. Both test samples are only available in minimum amounts. Experiments show that picoliter-volume spray pulses suffice to generate high-quality spectral fingerprints, which increase the information density produced per unit sample volume. This TENGi nanoESI strategy has the potential to fill in the gap in metabolomics where liquid chromatography-MS-based analyses cannot be applied. Our method opens up avenues for future investigations into understanding metabolic changes caused by diseases or external stimuli.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metabolomics, the study of metabolites present in biological samples, can provide a global view of sample state as well as insights into biological changes caused by disease or environmental interactions. Mass spectrometry (MS) is commonly used for metabolomics analysis given its high-throughput capabilities, high sensitivity, and capacity to identify multiple compounds in complex samples simultaneously. MS can be coupled to separation methods that can handle small volumes, making it well suited for analyzing the metabolome of organoids, miniaturized three-dimensional aggregates of stem cells that model in vivo organs. Organoids are being used in research efforts to study human disease and development, and in the design of personalized drug treatments. For organoid models to be useful, they need to recapitulate morphological and chemical aspects, such as the metabolome, of the parent tissue. This review highlights the separation- and imaging-based MS-based metabolomics methods that have been used to analyze the chemical contents of organoids. Future perspectives on how MS techniques can be optimized to determine the accuracy of organoid models and expand the field of organoid research are also discussed. 
    more » « less
  2. Elucidation of complex molecular networks requires integrative analysis of molecular features and changes at different levels of information flow and regulation. Accordingly, high throughput functional genomics tools such as transcriptomics, proteomics, metabolomics, and lipidomics have emerged to provide system-wide investigations. Unfortunately, analysis of different types of biomolecules requires specific sample extraction procedures in combination with specific analytical instrumentation. The most efficient extraction protocols often only cover a restricted type of biomolecules due to their different physicochemical properties. Therefore, several sets/aliquots of samples are needed for extracting different molecules. Here we adapted a biphasic fractionation method to extract proteins, metabolites, and lipids from the same sample (3-in-1) for liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-omics. To demonstrate utility of the improved method, we used bacteria-primed Arabidopsis leaves to generate multi-omics datasets from the same sample. In total, we were able to analyze 1849 proteins, 1967 metabolites, and 424 lipid species in single samples. The molecules cover a wide range of biological and molecular processes, and allow quantitative analyses of different molecules and pathways. Our results have shown the clear advantages of the multi-omics method, including sample conservation, high reproducibility, and tight correlation between different types of biomolecules. 
    more » « less
  3. Abstract

    Untargeted metabolomics based on liquid chromatography-mass spectrometry technology is quickly gaining widespread application, given its ability to depict the global metabolic pattern in biological samples. However, the data are noisy and plagued by the lack of clear identity of data features measured from samples. Multiple potential matchings exist between data features and known metabolites, while the truth can only be one-to-one matches. Some existing methods attempt to reduce the matching uncertainty, but are far from being able to remove the uncertainty for most features. The existence of the uncertainty causes major difficulty in downstream functional analysis. To address these issues, we develop a novel approach for Bayesian Analysis of Untargeted Metabolomics data (BAUM) to integrate previously separate tasks into a single framework, including matching uncertainty inference, metabolite selection and functional analysis. By incorporating the knowledge graph between variables and using relatively simple assumptions, BAUM can analyze datasets with small sample sizes. By allowing different confidence levels of feature-metabolite matching, the method is applicable to datasets in which feature identities are partially known. Simulation studies demonstrate that, compared with other existing methods, BAUM achieves better accuracy in selecting important metabolites that tend to be functionally consistent and assigning confidence scores to feature-metabolite matches. We analyze a COVID-19 metabolomics dataset and a mouse brain metabolomics dataset using BAUM. Even with a very small sample size of 16 mice per group, BAUM is robust and stable. It finds pathways that conform to existing knowledge, as well as novel pathways that are biologically plausible.

    more » « less
  4. Abstract

    There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at

    more » « less
  5. Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods. 
    more » « less