Abstract Understanding a tsunami source and its impact is vital to assess a tsunami hazard. Thanks to the efforts of the tsunami survey teams, high‐quality tsunami run‐up data exist for contemporary events. Still, it has not been widely used to infer a tsunami source and its impact mainly due to the computational burden of the tsunami forward model. In this study, we propose a TRRF‐INV (Tsunami Run‐up Response Function‐based INVersion) model that can provide probabilistic estimates of a near‐field tsunami source and tsunami run‐up distribution from a small number of run‐up records. We tested the TRRF‐INV model with synthetic tsunami scenarios in northern Chile and applied it to the 2014 Iquique, Chile, tsunami event as a case study. The results demonstrated that the TRRF‐INV model can provide a reasonable tsunami source estimate to first order and estimate tsunami run‐up distribution well. Moreover, the case‐study results agree well with the United States Geological Survey report and the global Centroid Moment Tensor solution. We also analyzed the performance of the TRRF‐INV model depending on the number and the uncertainty of run‐up records. We believe that the TRRF‐INV model has the potential for supporting accurate hazard assessment by (1) providing new insights from tsunami run‐up records into the tsunami source and its impact, (2) using the TRRF‐INV model as a tool to support existing tsunami inversion models, and (3) estimating a tsunami source and its impact for ancient events where no data other than estimated run‐up from sediment deposit data exist.
more »
« less
Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: Comparison with observed tsunami impact
- Award ID(s):
- 1756665
- PAR ID:
- 10311370
- Date Published:
- Journal Name:
- Marine Geology
- Volume:
- 440
- Issue:
- C
- ISSN:
- 0025-3227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This study presents a numerical investigation of the source aspect ratio (AR) influence on tsunami decay characteristics with an emphasis in near and far-field differences for two initial wave shapes Pure Positive Wave and N-wave. It is shown that, when initial total energy for both tsunami types is kept the same, short-rupture tsunami with more concentrated energy are likely to be more destructive in the near-field, whereas long rupture tsunami are more dangerous in the far-field. The more elongated the source is, the stronger the directivity and the slower the amplitude decays in the intermediate- and far-fields. We present evidence of this behavior by comparing amplitude decay rates from idealized sources and showing their correlation with that observed in recent historical events of similar AR.more » « less
-
This paper presents the use of tsunami evacuation drills within a coastal community in the Cascadia Subduction Zone (CSZ) to better understand evacuation behaviors and thus to improve tsunami evacuation preparedness and resilience. Evacuees’ spatial trajectory data were collected by Global Navigation Satellite System (GNSS) embedded in mobile devices. Based on the empirical trajectory data, probability functions were employed to model people’s walking speed during the evacuation drills. An Evacuation Hiking Function (EHF) was established to depict the speed–slope relationship and to inform evacuation modeling and planning. The regression analysis showed that evacuees’ speed was significantly negatively associated with slope, time spent during evacuation, rough terrain surface, walking at night, and distance to destination. We also demonstrated the impacts of milling time on mortality rate based on participants’ empirical evacuation behaviors and a state-of-the-art CSZ tsunami inundation model. Post-drill surveys revealed the importance of the drill as an educational and assessment tool. The results of this study can be used for public education, evacuation plan assessment, and evacuation simulation models. The drill procedures, designs, and the use of technology in data collection provide evidence-driven solutions to tsunami preparedness and inspire the use of drills in other types of natural disasters such as wildfires, hurricanes, volcanoes, and flooding.more » « less
An official website of the United States government

