skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Robust Illumination-Invariant Camera System for Agricultural Applications
Object detection and semantic segmentation are two of the most widely adopted deep learning algorithms in agricultural applications. One of the major sources of variability in image quality acquired in the outdoors for such tasks is changing lighting condition that can alter the appearance of the objects or the contents of the entire image. While transfer learning and data augmentation to some extent reduce the need for large amount of data to train deep neural networks, the large variety of cultivars and the lack of shared datasets in agriculture makes wide-scale field deployments difficult. In this paper, we present a high throughput robust active lighting-based camera system that generates consistent images in all lighting conditions. We detail experiments that show the consistency in images quality leading to relatively fewer images to train deep neural networks for the task of object detection. We further present results from field experiment under extreme lighting conditions where images without active lighting significantly lack to provide consistent results. The experimental results show that on average, deep nets for object detection trained on consistent data required nearly four times less data to achieve similar level of accuracy. This proposed work could potentially provide pragmatic solutions to computer vision needs in agriculture.  more » « less
Award ID(s):
1956163
PAR ID:
10311421
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
ISSN:
2153-0858
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning algorithms widely used in computer vision which can be used to study flood images and assign learnable weights to various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a training database service of >9000 images (image annotation service) including the image geolocation information by streaming relevant images from social media platforms, Department of Transportation (DOT) 511 traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search engines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3 (You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package for flood water level estimation and classification. The pipeline is smartly designed to train a large number of images and calculate flood water levels and inundation areas which can be used to identify flood depth, severity, and risk. “FloodImageClassifier” can be embedded with the USGS live river cameras and 511 traffic cameras to monitor river and road flooding conditions and provide early intelligence to emergency response authorities in real-time. 
    more » « less
  2. Underwater image enhancement and turbidity removal (dehazing) is a very challenging problem, not only due to the sheer variety of environments where it is applicable, but also due to the lack of high-resolution, labelled image data. In this paper, we present a novel, two-step deep learning approach for underwater image dehazing and colour correction. In iDehaze, we leverage computer graphics to physically model light propagation in underwater conditions. Specifically, we construct a three-dimensional, photorealistic simulation of underwater environments, and use them to gather a large supervised training dataset. We then train a deep convolutional neural network to remove the haze in these images, then train a second network to transform the colour space of the dehazed images onto a target domain. Experiments demonstrate that our two-step iDehaze method is substantially more effective at producing high-quality underwater images, achieving state-of-the-art performance on multiple datasets. Code, data and benchmarks will be open sourced. 
    more » « less
  3. Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    Recognizing the model of a vehicle in natural scene images is an important and challenging task for real-life applications. Current methods perform well under controlled conditions, such as frontal and horizontal view-angles or under optimal lighting conditions. Nevertheless, their performance decreases significantly in an unconstrained environment, that may include extreme darkness or over illuminated conditions. Other challenges to recognition systems include input images displaying very low visual quality or considerably low exposure levels. This paper strives to improve vehicle model recognition accuracy in dark scenes by using a deep neural network model. To boost the recognition performance of vehicle models, the approach performs joint enhancement and localization of vehicles for non-uniform-lighting conditions. Experimental results on several public datasets demonstrate the generality and robustness of our framework. It improves vehicle detection rate under poor lighting conditions, localizes objects of interest, and yields better vehicle model recognition accuracy on low-quality input image data. Grants: This work is supported by the US Department of Transportation, Federal Highway Administration (FHWA), grant contract: 693JJ320C000023 Keywords—Image enhancement, vehicle model and 
    more » « less
  4. High-quality environment lighting is essential for creating immersive mobile augmented reality (AR) experiences. However, achieving visually coherent estimation for mobile AR is challenging due to several key limitations in AR device sensing capabilities, including low camera FoV and limited pixel dynamic ranges. Recent advancements in generative AI, which can generate high-quality images from different types of prompts, including texts and images, present a potential solution for high-quality lighting estimation. Still, to effectively use generative image diffusion models, we must address two key limitations of content quality and slow inference. In this work, we design and implement a generative lighting estimation system called CleAR that can produce high-quality, diverse environment maps in the format of 360° HDR images. Specifically, we design a two-step generation pipeline guided by AR environment context data to ensure the output aligns with the physical environment's visual context and color appearance. To improve the estimation robustness under different lighting conditions, we design a real-time refinement component to adjust lighting estimation results on AR devices. To train and test our generative models, we curate a large-scale environment lighting estimation dataset with diverse lighting conditions. Through a combination of quantitative and qualitative evaluations, we show that CleAR outperforms state-of-the-art lighting estimation methods on both estimation accuracy, latency, and robustness, and is rated by 31 participants as producing better renderings for most virtual objects. For example, CleAR achieves 51% to 56% accuracy improvement on virtual object renderings across objects of three distinctive types of materials and reflective properties. CleAR produces lighting estimates of comparable or better quality in just 3.2 seconds---over 110X faster than state-of-the-art methods. Moreover, CleAR supports real-time refinement of lighting estimation results, ensuring robust and timely updates for AR applications. 
    more » « less
  5. Abstract Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images. 
    more » « less