skip to main content


Title: Supporting Students' Skillful Learning: Lessons Learned from a Faculty Development Workshop
In this Lessons Learned paper, we describe the implementation of an on-campus workshop focused on supporting faculty as they develop metacognitive interventions for their educational contexts. This on-campus workshop at Duke University included faculty from engineering as well as other faculty from campus and was developed and implemented by members of the Skillful Learning Institute Team. First, we describe the purpose and intent of the workshop by the host institution (Duke University) and the workshop development team (Skillful-Learning Institute Team). We then provide the workshop overview across the two day period, including a description of instruction provided and structured breakout sessions. Next, we provide a lessons learned section from the perspectives of the host institution and the workshop developers. Finally, we offer insights into how those lessons learned are being incorporated into the development of future workshops. By providing the two perspectives, our lessons learned should help those who invite speakers in for faculty development and those who are creating faculty development activities.  more » « less
Award ID(s):
1932969
NSF-PAR ID:
10311436
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Lessons Learned paper, we describe the implementation of an on-campus workshop focused on supporting faculty as they develop metacognitive interventions for their educational contexts. This on-campus workshop at Duke University included faculty from engineering as well as other faculty from campus and was developed and implemented by members of the Skillful Learning Institute Team. First, we describe the purpose and intent of the workshop by the host institution (Duke University) and the workshop development team (Skillful-Learning Institute Team). We then provide the workshop overview across the two day period, including a description of instruction provided and structured breakout sessions. Next, we provide a lessons learned section from the perspectives of the host institution and the workshop developers. Finally, we offer insights into how those lessons learned are being incorporated into the development of future workshops. By providing the two perspectives, our lessons learned should help those who invite speakers in for faculty development and those who are creating faculty development activities. 
    more » « less
  2. In this Lessons Learned paper, we describe the implementation of an on-campus workshop focused on supporting faculty as they develop metacognitive interventions for their educational contexts. This on-campus workshop at Duke University included faculty from engineering as well as other faculty from campus and was developed and implemented by members of the Skillful Learning Institute Team. First, we describe the purpose and intent of the workshop by the host institution (Duke University) and the workshop development team (Skillful-Learning Institute Team). We then provide the workshop overview across the two day period, including a description of instruction provided and structured breakout sessions. Next, we provide a lessons learned section from the perspectives of the host institution and the workshop developers. Finally, we offer insights into how those lessons learned are being incorporated into the development of future workshops. By providing the two perspectives, our lessons learned should help those who invite speakers in for faculty development and those who are creating faculty development activities. 
    more » « less
  3. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less
  4. A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industry partners as well as the agility of the core research team to overcome unexpected challenges. However, the reflections also revealed several areas for improvement that would increase the accessibility of the site to underserved and/or underrepresented teacher populations, better utilize the resources available and in general, improve the quality of the program and curriculum developed by the teachers. Included within this paper are suggestions that the authors would make to improve current and future RET sites. All of the teachers agreed or strongly agreed that their participation in the RET program increased their knowledge of STEM topics and specifically, civil engineering topics. The participants agreed to varying extents that they will use the information they learned from the program to teach their students and will implement the new strategies they gained to promote increased student learning about STEM topics. Furthermore, the feedback that they provided corroborated some of the same changes the authors plan to implement. 
    more » « less
  5. This research paper presents preliminary results of the Educational Ecosystem Health Survey (EEHS), a survey instrument designed by the Eco-STEM team at California State University, Los Angeles, a regionally serving, very high Hispanic-enrolling Minority Serving Institution (MSI). The purpose of the instrument is to quantitatively measure the health of the STEM educational ecosystem from the perspectives of the actors within it. The Eco-STEM team is implementing an ongoing NSF-funded research project aiming to change the paradigm of teaching and learning in STEM and its aligned mental models from factory-like to ecosystem- like. We hypothesize that this model of education will better support students and their individual needs. The pilot results of administering the EEHS to students within the College of Engineering, Computer Science, and Technology and the College of Natural and Social Sciences provide a baseline from which the Eco-STEM team will analyze diversion – and, hopefully, improvement – over the coming years of the project. The pilot survey was administered to undergraduate and graduate students at California State University, Los Angeles, of which the majority have ethnically- and socioeconomically- minoritized backgrounds. The EEHS is comprised of validated survey instruments that query students’ perceptions of various aspects of systemic educational health. These instruments measure the constructs of Classroom Comfort, Faculty Understanding, Belongingness, Thriving, Mindfulness, and Motivation. T-tests and ANOVA models are employed to analyze variations in responses among students based on a host of demographic identifiers. Pilot results from the first administration of the survey include, for example, statistically significant lower reported levels of thriving and mindfulness for students who identify as LGBTQIA+ than those who do not, as well as far lower levels of ecosystem health overall for students who do not have access to stable housing. Additional statistically significant results are identified on the bases of students’ gender, race/ethnicity, disability status, veteran status, undergraduate versus graduate student status, college of study, employment situation, and more detailed housing situation. The pilot results of the EEHS provide detailed insight into the experiences and needs of students in STEM programs at MSIs and regionally serving institutions. The results may also be useful within the contexts of a diverse range of institutions as they strive to serve students from historically marginalized backgrounds. 
    more » « less