skip to main content


Title: Ultraviolet Laser Absorption Imaging of High-Speed Flows in a Shock Tube
Observation of high-speed reactive flows using laser-absorption-based imaging techniques is of interest for its potential to quantitatively reveal both gas-dynamic and thermochemical processes. In the current study, an ultraviolet (UV) laser-absorption imaging method based on nitric oxide (NO) is demonstrated to capture transient flows in a shock tube. A tunable laser was used to generate a continuous-wave UV beam at 226.1019 nm to coincide with a strong NO absorption feature. The UV beam was expanded to a 20-mm diameter and routed through the shock tube to image the flow adjacent to the end wall. Time-resolved imaging was realized using a Lambert HiCATT high-speed UV intensifier coupled to a Phantom v2012 high-speed camera. Static absorbance measurements of 1.97% NO/Ar mixtures were first performed to validate the proposed imaging concept, showing good agreement with values predicted by a spectroscopic model. UV laser-absorption images of incident and reflected shock waves captured at 90 kHz temporal resolution are then reported. Translational temperature profiles across the incident and reflected shocks calculated from absorbance images show reasonable agreement with calculated values. After the passage of the reflected shock wave, the flow near the end wall was monitored to probe the development of the end-wall thermal boundary layer. Thermometry measurements across the thermal boundary layer show good agreement with analytical solutions. This study demonstrates the potential of UV laser-absorption imaging in high-speed flow fields, to be applied to more complex applications in the future.  more » « less
Award ID(s):
1940865
NSF-PAR ID:
10311613
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AIAA SCITECH 2022 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Flame speed measurements of stoichiometric (f=1) propane in an oxygen-argon oxidizer (21% O2, 79% Ar) were conducted behind reflected shock waves at unburned-gas temperatures from 800 K to nearly 1,200 K. As in previous shock-tube flame speed experiments, non-intrusive laser-induced-breakdown is used to ignite an expanding flame in the nominally quiescent gas following the reflected-shock passage. In addition to the end-wall emission imaging employed in previous works, a schlieren imaging diagnostic is employed utilizing side-wall optical ports. The high temporal and spatial resolutions of the schlieren diagnostic allow for measurements to be made of small, curvature-stabilized flames (r < 7 mm) with short measurement times (t < 600 ms). Direct comparison of simultaneous emission- and schlieren-based measurements illustrates that measurements performed with the two techniques agree at comparable flame radii. The comparison further shows the schlieren-based measurements do not show evidence of flame acceleration as is seen in the emission based measurements at larger flame radii and longer measurement times. Extrapolated, zero-stretch flame speeds are compared with those calculated using detailed and reduced reaction mechanisms, accounting for auto-ignition chemistry effects in accordance with the recent literature. 
    more » « less
  2. null (Ed.)
    The application of simultaneous, dual-perspective, high-speed imaging to expanding flame experiments in a shock tube provides new opportunities to characterize the post-reflected-shock flow field. The shock-tube flame speed method has recently been demonstrated as an experimental approach to enable flame speed measurements at high unburned-gas temperatures inaccessible to previously established methodologies. The fidelity of these experiments are predicated on two underlying assumptions: quiescence of the unburned gas and symmetry of the expanding flames. While both are ubiquitous in the related literature, neither of these assumptions had been previously explicitly evaluated in relation to shock-tube flame experiments. This work reports the first measurements in which side-wall emission imaging, in addition to simultaneous end-wall imaging, is applied to expanding flame experiments in a shock tube. The fact that the burned gas within an expanding flame is nominally stagnant relative to the local flow field is leveraged to perform single-point, 3D velocimetry measurements of the core gas based upon the motion of the flame centroid, or “flame drift”. These measurements reveal that minimal motion is present in the radial directions, while the velocity of the core gas in the axial direction is larger in magnitude and displays strong temperature dependence. The 3D morphology of flames is also characterized for the first time. Side wall imaging reveals that, while the expected flame symmetry is observed under some conditions, it breaks down under others, particularly at increasing temperatures. These results shed new light on previously reported flame structure observed in shock-tube flame experiments, which can now be explained as the axial integration of emission from an axially distorted flame. These observations serve as a demonstration of a novel diagnostic application, provide new insight as to how future shock-tube flame experiments might be refined, and motivate the continued use of side-wall imaging to ensure the fidelity of future shock-tube flame speed measurements. 
    more » « less
  3. The dynamics of flame propagation at high unburned-gas temperatures are of critical importance to the performance and operability of modern engine systems but have long existed beyond the temperature regimes accessible to controlled laboratory study. The shock-tube flame speed method has been demonstrated to enable the study of premixed, freely propagating flames over a wide range of previously unachievable engine-relevant unburned-gas temperature conditions. This study reports the first systematic investigation of end-wall-induced effects on the propagation and stability of flames subject to asymmetric flow confinement in a shock tube. Through the flexibility afforded by newly available optical access, the axial position of flame ignition was varied over a range spanning from 3.3 to 15.5 cm from the driven end wall. Experiments performed under static conditions isolated the effect of asymmetric end-wall confinement and provided an opportunity to measure the flow velocity induced by the confinement effect; results show the expected functional scaling exists between flame radius, distance from the end wall, and flow velocity, but the velocity scaling deviates from that predicted. Experiments performed behind reflected shock waves are then used to probe the interplay between the confinement and gas-dynamic effects in the post-reflected-shock environment. In a break with intuition, the post-shock results show a non-monotonic relationship between position and flame stability, with one particular distance (6.4 cm) producing significantly more severe distortion than flames ignited either nearer or farther from the end wall. Finally, experiments demonstrating the generation of hemispherically expanding flames in the shock tube are reported, providing a baseline to inform the consideration of such flames as an alternative basis for flame speed measurements. The experimental measurements reported in this work provide valuable new validation targets against which detailed modeling of confinement and gas-dynamic effects can be compared, while the side-wall observations reaffirm that spherically expanding flames suitable for use in reliable laminar flame speed measurements can be generated in a post-reflected-shock environment. 
    more » « less
  4. Focused laser differential interferometry (FLDI) is an important diagnostic for measuring density fluctuations in high-speed flows. Currently, however, high dynamic range FLDI is limited to photodiode measurements. In order to spatially resolve multiple locations within complex flows, we present a novel, to the best of our knowledge, refractive-optic imaging FLDI concept that not only produces two-dimensional images without scanning but also reduces the measurement noise floor of those images. To demonstrate this concept, a 33 × 33 grid of FLDI points is first generated using a microlens array. Then, the beams are split and recombined using two polarized Mach–Zehnder interferometers to maximize flexibility in beam separation and optimize signal sensitivity. Next, the FLDI points are collected slightly out of focus on a high-speed camera in order to increase the number of pixelsnper FLDI point, thereby reducing noise floor byn. Finally, an under-expanded jet with a characteristic screech at 14.1 kHz is tested with the imaging FLDI setup, showing clear barrel and reflected shock features as well as spatially varying turbulence densities. Overall, this unique concept enables the creation of reduced-noise-floor, two-dimensional FLDI datasets for the study of supersonic and hypersonic flows.

     
    more » « less
  5. null (Ed.)
    Flight vehicles that operate in the supersonic regime can be subject to adverse fluid-structure interactions due to their lightweight design. The presence of geometric obstructions such as control surfaces or fins can induce compression shocks that can interact with the boundary layer, leading to flow separation. The interaction of flow, compression shock and structural dynamics is very difficult to model and currently only poorly understood. This work investigates experimentally the interaction between a compliant panel in a Mach 2 flow under a ramp-induced shock-wave/boundary layer interaction (SWBLI). Brass panels of length 4.8" and width 2.5" and different thicknesses (h=0.020", 0.016", 0.012" and 0.010") are investigated. Tests are performed both with and without a compression ramp installed. This direct comparison allows characterization of the effect of the SWBLI on the system dynamics. High-speed stereoscopic digital image correlation (DIC) and fast-response pressure sensitive paint (PSP) are used to obtain simultaneous full field deformation and surface pressure of the panels. The results show that the shock induced by the 20compression ramp leads to separation of the turbulent boundary layer close to the ramp starting at about 80% of the panel length. This results in a region of large pressure fluctuations which primarily increase the vibration amplitude of the second panel mode. Analysis of the fundamental mode, which contains most of the vibration energy of the panel, shows that the SWBLI does not lead to changes of this mode, neither in frequency, amplitude or mode shape. On the other hand, analysis of the shock foot motion shows that the shock primarily oscillates at the fundamental frequency of the panel. This means that while the shock and panel oscillate at the same frequency, it is not two-way coupling. The panel vibration dictates the motion of the shock, but the shock (or rather the SWBLI) does not modify the fundamental panel vibration beyond the forcing provided by the turbulent boundary layer. Full field surface pressure predictions are made using linearized potential flow theory, which relates the local slope of the panel to the surface pressure. Results are found to be in good agreement in the region of attached flow. 
    more » « less