skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Service Quality Using Text Mining: Measurement and Consequences
Problem description: Measuring quality in the service industry remains a challenge. Existing methodologies are often costly and unscalable. Furthermore, understanding how elements of service quality contribute to the performance of service providers continues to be a concern in the service industry. In this paper, we address these challenges in the restaurant sector, a vital component of the service industry. Academic/practical relevance: Our work provides a scalable methodology for measuring the quality of service providers using the vast amount of text in social media. The quality metrics proposed are associated with economic outcomes for restaurants and can help predict future restaurant performance. Methodology: We use text present in online reviews on Yelp.com to identify and extract service dimensions using nonnegative matrix factorization for a large set of restaurants located in a major city in the United States. We subsequently validate these service dimensions as proxies for service quality using external data sources and a series of laboratory experiments. Finally, we use econometrics to test the relationship between these dimensions and restaurant survival as additional validation. Results: We find that our proposed service quality dimensions are scalable, match industry standards, and are correctly identified by subjects in a controlled setting. Furthermore, we show that specific service dimensions are significantly correlated with the survival of merchants, even after controlling for competition and other factors. Managerial implications: This work has implications for the strategic use of text analytics in the context of service operations, where an increasingly large text corpus is available. We discuss the benefits of this work for service providers and platforms, such as Yelp and OpenTable.  more » « less
Award ID(s):
1633158
PAR ID:
10311616
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Manufacturing & Service Operations Management
Volume:
23
Issue:
6
ISSN:
1523-4614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Even though a restaurant may receive different ratings across review platforms, people often see only one rating during a local search (e.g. 'best burgers near me'). In this paper, we examine the differences in ratings between two commonly used review platforms-Google Maps and Yelp. We found that restaurant ratings on Google Maps are, on average, 0.7 stars higher than those on Yelp, with the increase being driven in large part by higher ratings for chain restaurants on Google Maps. We also found extensive diversity in top-ranked restaurants by geographic region across platforms. For example, for a given metropolitan area, there exists little overlap in its top ten lists of restaurants on Google Maps and Yelp. Our results problematize the use of a single review platform in local search and have implications for end users of ratings and local search technologies. We outline concrete design recommendations to improve communication of restaurant evaluation and discuss the potential causes for the divergence we observed. 
    more » « less
  2. Abstract. Cooking is an important but understudied source of urban anthropogenic fine particulate matter (PM2.5). Using a mobile laboratory, we measured PM size and composition in urban restaurant plumes. Size distribution measurements indicate that restaurants are a source of urban ultrafine particles (UFPs, particles <100 nm mobility diameter), with a mode diameter <50 nm across sampled restaurants and particle number concentrations (PNCs, a proxy for UFPs) that were substantially elevated relative to the urban background. In our observations, PM mass emitted from restaurants was almost entirely organic aerosol (OA). Aerosol mass spectra show that while emissions from most restaurants were similar, there were key mass spectral differences. All restaurants emit OA at m/z 41, 43, and 55, though the composition (e.g., the ratio of oxygenated to reduced ions at specific m/z) varied across locations. All restaurant emissions included reduced-nitrogen species detected as CxHyN+ fragments, making up ∼15 % of OA mass measured in plumes, with reduced molecular functionalities (e.g., amines, imides) that were often accompanied by oxygen-containing functional groups. The largest reduced-nitrogen emissions were observed from a commercial bread bakery (i.e., 30 %–50 % of OA mass), highlighting the marked differences between restaurants and their importance for emissions of both urban UFPs and reduced nitrogen. 
    more » « less
  3. In the Internet of Things (loT) era, edge computing is a promising paradigm to improve the quality of service for latency sensitive applications by filling gaps between the loT devices and the cloud infrastructure. Highly geo-distributed edge computing resources that are managed by independent and competing service providers pose new challenges in terms of resource allocation and effective resource sharing to achieve a globally efficient resource allocation. In this paper, we propose a novel blockchain-based model for allocating computing resources in an edge computing platform that allows service providers to establish resource sharing contracts with edge infrastructure providers apriori using smart contracts in Ethereum. The smart contract in the proposed model acts as the auctioneer and replaces the trusted third-party to handle the auction. The blockchain-based auctioning protocol increases the transparency of the auction-based resource allocation for the participating edge service and infrastructure providers. The design of sealed bids and bid revealing methods in the proposed protocol make it possible for the participating bidders to place their bids without revealing their true valuation of the goods. The truthful auction design and the utility-aware bidding strategies incorporated in the proposed model enables the edge service providers and edge infrastructure providers to maximize their utilities. We implement a prototype of the model on a real blockchain test bed and our extensive experiments demonstrate the effectiveness, scalability and performance efficiency of the proposed approach. 
    more » « less
  4. Restaurants are increasingly relying on on-demand delivery platforms (e.g., DoorDash, Grubhub, and Uber Eats) to reach customers and fulfill takeout orders. Although on-demand delivery is a valuable option for consumers, whether restaurants benefit from or are being hurt by partnering with these platforms remains unclear. This paper investigates whether and to what extent the platform delivery channel substitutes restaurants’ own takeout/dine-in channels and the net impact on restaurant revenue. Empirical analyses show that restaurants overall benefit from on-demand delivery platforms—these platforms increase restaurants’ total takeout sales while creating positive spillovers to customer dine-in visits. However, the platform effects are substantially heterogeneous, depending on the type of restaurants (independent versus chain) and the type of customer channels (takeout versus dine-in). The overall positive effect on fast-food chains is four times as large as that on independent restaurants. For takeout, delivery platforms substitute independent restaurants’ but complement chain restaurants’ own takeout sales. For dine-in, delivery platforms increase both independent and chain restaurants’ dine-in visits by a similar magnitude. Therefore, the value of delivery platforms to independent restaurants mostly comes from the increase in dine-in visits, whereas the value to chain restaurants primarily comes from the gain in takeout sales. Further, the platform delivery channel facilitates price competition and reduces the opportunity for independent restaurants to differentiate with premium services and dine-in experience, which may explain why independent restaurants do not benefit as much from on-demand delivery platforms. This paper was accepted by D. J. Wu, information systems. Funding: Z. Li is grateful to the National Science Foundation Division of Social and Economic Sciences for support provided through the CAREER award [Grant 2243736]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.01010 . 
    more » « less
  5. null (Ed.)
    Building a question-answering agent currently requires large annotated datasets, which are prohibitively expensive. This paper proposes Schema2QA, an open-source toolkit that can generate a Q&A system from a database schema augmented with a few annotations for each field. The key concept is to cover the space of possible compound queries on the database with a large number of in-domain questions synthesized with the help of a corpus of generic query templates. The synthesized data and a small paraphrase set are used to train a novel neural network based on the BERT pretrained model. We use Schema2QA to generate Q&A systems for five this http URL domains, restaurants, people, movies, books and music, and obtain an overall accuracy between 64% and 75% on crowdsourced questions for these domains. Once annotations and paraphrases are obtained for a this http URL schema, no additional manual effort is needed to create a Q&A agent for any website that uses the same schema. Furthermore, we demonstrate that learning can be transferred from the restaurant to the hotel domain, obtaining a 64% accuracy on crowdsourced questions with no manual effort. Schema2QA achieves an accuracy of 60% on popular restaurant questions that can be answered using this http URL. Its performance is comparable to Google Assistant, 7% lower than Siri, and 15% higher than Alexa. It outperforms all these assistants by at least 18% on more complex, long-tail questions. 
    more » « less