skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactive Graph Stream Analytics in Arkouda
Data from emerging applications, such as cybersecurity and social networking, can be abstracted as graphs whose edges are updated sequentially in the form of a stream. The challenging problem of interactive graph stream analytics is the quick response of the queries on terabyte and beyond graph stream data from end users. In this paper, a succinct and efficient double index data structure is designed to build the sketch of a graph stream to meet general queries. A single pass stream model, which includes general sketch building, distributed sketch based analysis algorithms and regression based approximation solution generation, is developed, and a typical graph algorithm—triangle counting—is implemented to evaluate the proposed method. Experimental results on power law and normal distribution graph streams show that our method can generate accurate results (mean relative error less than 4%) with a high performance. All our methods and code have been implemented in an open source framework, Arkouda, and are available from our GitHub repository, Bader-Research. This work provides the large and rapidly growing Python community with a powerful way to handle terabyte and beyond graph stream data using their laptops.  more » « less
Award ID(s):
2109988
PAR ID:
10311633
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Algorithms
Volume:
14
Issue:
8
ISSN:
1999-4893
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While much of the research on graph analytics over large power-law graphs has focused on developing algorithms for evaluating a single global graph query, in practice we may be faced with a stream of queries. We observe that, due to their global nature, vertex specific graph queries present an opportunity for sharing work across queries. To take advantage of this opportunity, we have developed the VRGQ framework that accelerates the evaluation of a stream of queries via coarsegrained value reuse. In particular, the results of queries for a small set of source vertices are reused to speedup all future queries. We present a two step algorithm that in its first step initializes the query result based upon value reuse and then in the second step iteratively evaluates the query to convergence. The reused results for a small number of queries are held in a reuse table. Our experiments with best reuse configurations on four power law graphs and thousands of graph queries of five kinds yielded average speedups of 143×, 13.2×, 6.89×, 1.43×, and 1.18×. 
    more » « less
  2. Michael Mahoney (Ed.)
    This paper develops conformal inference methods to construct a confidence interval for the frequency of a queried object in a very large discrete data set, based on a sketch with a lower memory footprint. This approach requires no knowledge of the data distribution and can be combined with any sketching algorithm, including but not limited to the renowned count-min sketch, the count-sketch, and variations thereof. After explaining how to achieve marginal coverage for exchangeable random queries, we extend our solution to provide stronger inferences that can account for the discreteness of the data and for heterogeneous query frequencies, increasing also robustness to possible distribution shifts. These results are facilitated by a novel conformal calibration technique that guarantees valid coverage for a large fraction of distinct random queries. Finally, we show our methods have improved empirical performance compared to existing frequentist and Bayesian alternatives in simulations as well as in examples of text and SARS-CoV-2 DNA data. 
    more » « less
  3. Real-time data analysis applications increasingly rely on complex streaming computations over time-series data. We propose StreamQL, a language that facilitates the high-level specification of complex analyses over streaming time series. StreamQL is designed as an algebra of stream transformations and provides a collection of combinators for composing them. It integrates three language-based approaches for data stream processing: relational queries, dataflow composition, and temporal formalisms. The relational constructs are useful for specifying simple transformations, aggregations, and the partitioning of data into key-based groups or windows. The dataflow abstractions enable the modular description of a computation as a pipeline of stages or, more generally, as a directed graph of independent tasks. Finally, temporal constructs can be used to specify complex temporal patterns and time-varying computations. These constructs can be composed freely to describe complex streaming computations. We provide a formal denotational semantics for StreamQL using a class of monotone functions over streams. We have implemented StreamQL as a lightweight Java library, which we use to experimentally evaluate our approach. The experiments show that the throughput of our implementation is competitive compared to state-of-the-art streaming engines such as RxJava and Reactor. 
    more » « less
  4. A massive amount of data generated today on platforms such as social networks, telecommunication networks, and the internet in general can be represented as graph streams. Activity in a network’s underlying graph generates a sequence of edges in the form of a stream; for example, a social network may generate a graph stream based on the interactions (edges) between different users (nodes) over time. While many graph mining algorithms have already been developed for analyzing relatively small graphs, graphs that begin to approach the size of real-world networks stress the limitations of such methods due to their dynamic nature and the substantial number of nodes and connections involved. In this paper we present GraphZip, a scalable method for mining interesting patterns in graph streams. GraphZip is inspired by the Lempel-Ziv (LZ) class of compression algorithms, and uses a novel dictionary-based compression approach to discover maximally- compressing patterns in a graph stream. We experimentally show that GraphZip is able to retrieve complex and insightful patterns from large real-world graphs and artificially-generated graphs with ground truth patterns. Additionally, our results demonstrate that GraphZip is both highly efficient and highly effective compared to existing state-of-the-art methods for mining graph streams. 
    more » « less
  5. Sketches are single-pass small-space data summaries that can quickly estimate the cardinality of join queries. However, sketches are not directly applicable to join queries with dynamic filter conditions --- where arbitrary selection predicate(s) are applied --- since a sketch is limited to a fixed selection. While multiple sketches for various selections can be used in combination, they each incur individual storage and maintenance costs. Alternatively, exact sketches can be built during runtime for every selection. To make this process scale, a high-degree of parallelism --- available in hardware accelerators such as GPUs --- is required. Therefore, sketch usage for cardinality estimation in query optimization is limited. Following recent work that applies transformers to cardinality estimation, we design a novel learning-based method to approximate the sketch of any arbitrary selection, enabling sketches for join queries with filter conditions. We train a transformer on each table to estimate the sketch of any subset of the table, i.e., any arbitrary selection. Transformers achieve this by learning the joint distribution amongst table attributes, which is equivalent to a multidimensional sketch. Subsequently, transformers can approximate any sketch, enabling sketches for join cardinality estimation. In turn, estimating joins via approximate sketches allows tables to be modeled individually and thus scales linearly with the number of tables. We evaluate the accuracy and efficacy of approximate sketches on queries with selection predicates consisting of conjunctions of point and range conditions. Approximate sketches achieve similar accuracy to exact sketches with at least one order of magnitude less overhead. 
    more » « less