skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LAGraph: Linear Algebra, Network Analysis Libraries, and the Study of Graph Algorithms
Graph algorithms can be expressed in terms of linear algebra. GraphBLAS is a library of low-level building blocks for such algorithms that targets algorithm developers. LAGraph builds on top of the GraphBLAS to target users of graph algorithms with high-level algorithms common in network analysis. In this paper, we describe the first release of the LAGraph library, the design decisions behind the library, and performance using the GAP benchmark suite. LAGraph, however, is much more than a library. It is also a project to document and analyze the full range of algorithms enabled by the GraphBLAS. To that end, we have developed a compact and intuitive notation for describing these algorithms. In this paper, we present that notation with examples from the GAP benchmark suite.  more » « less
Award ID(s):
2109988
PAR ID:
10311637
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2013, we released a position paper to launch a community effort to define a common set of building blocks for constructing graph algorithms in the language of linear algebra. This led to the GraphBLAS. We released a specification for the C programming language binding to the GraphBLAS in 2017. Since that release, multiple libraries that conform to the GraphBLAS C specification have been produced. In this position paper, we launch the next phase of this ongoing community effort: a project to assemble a set of high level graph algorithms built on top of the GraphBLAS. While many of these algorithms are well-known with high quality implementations available, they have not been assembled in one place and integrated with the GraphBLAS. We call this project the LAGraph graph algorithms project and with this position paper, we put out a call for collaborators to join us. While the initial goal is to just assemble these algorithms into a single framework, the long term goal is a library of production-worthy code, with the LAGraph library serving as an open source repository of verified graph algorithms that use the GraphBLAS. 
    more » « less
  2. In 2013, we released a position paper to launch a community effort to define a common set of building blocks for constructing graph algorithms in the language of linear algebra. This led to the GraphBLAS. We released a specification for the C programming language binding to the GraphBLAS in 2017. Since that release, multiple libraries that conform to the GraphBLAS C specification have been produced. In this position paper, we launch the next phase of this ongoing community effort: a project to assemble a set of high level graph algorithms built on top of the GraphBLAS. While many of these algorithms are well-known with high quality implementations available, they have not been assembled in one place and integrated with the GraphBLAS. We call this project the LAGraph graph algorithms project and with this position paper, we put out a call for collaborators to join us. While the initial goal is to just assemble these algorithms into a single framework, the long term goal is a library of production-worthy code, with the LAGraph library serving as an open source repository of verified graph algorithms that use the GraphBLAS. 
    more » « less
  3. Identifying key members in large social network graphs is an important graph analytic. Recently, a new centrality measure called triangle centrality finds members based on the triangle support of vertices in graph. In this paper, we describe our rapid implementation of triangle centrality using Graph-BLAS, an API specification for describing graph algorithms in the language of linear algebra. We use triangle centrality’s algebraic algorithm and easily implement it using the SuiteSparse GraphBLAS library. A set of experiments on large, sparse graph datasets is conducted to verify the implementation. 
    more » « less
  4. The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, the two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Performance measurements of prototype GraphBLAS implementations indicate that the overhead is low. 
    more » « less
  5. We introduce the ParClusterers Benchmark Suite (PCBS)---a collection of highly scalable parallel graph clustering algorithms and benchmarking tools that streamline comparing different graph clustering algorithms and implementations. The benchmark includes clustering algorithms that target a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. The benchmark toolkit makes it easy to run and evaluate multiple instances of different clustering algorithms with respect to both the running time and quality. We evaluate the PCBS algorithms empirically and find that they deliver both the state of the art quality and the running time. In terms of the running time, they are on average over 4x faster than the fastest library we compared to. In terms of quality, the correlation clustering algorithm [Shi et al., VLDB'21] optimizing for the LambdaCC objective, which does not have a direct counterpart in other libraries, delivers the highest quality in the majority of datasets that we used. 
    more » « less