skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of Immunity Associated Proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. Since apoptosis, autophagy, and immunity have previously shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida. To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy, and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs. Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates Ep_GIMAPs may be involved in regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.  more » « less
Award ID(s):
1828540
PAR ID:
10311683
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Experimental Biology
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Immunogenic cell death (ICD) plays a major role in providing long lasting protective antitumor immunity by the chronic exposure of damage associated molecular patterns (DAMPs) in the tumor microenvironment (TME). DAMPs are essential for attracting immunogenic cells to the TME, maturation of DCs, and proper presentation of tumor antigens to the T cells so they can kill more cancer cells. Thus for the proper release of DAMPs, a controlled mechanism of cell death is necessary. Drug induced tumor cell killing occurs by apoptosis, where in autophagy may act as a shield protecting the tumor cells and sometimes providing multi-drug resistance to chemotherapeutics. However, autophagy is required for the release of ATP as it remains one of the key DAMPs for the induction of ICD. In this review, we discuss the intricate balance between autophagy and apoptosis and the various strategies that we can apply to make these immunologically silent processes immunogenic. There are several steps of autophagy and apoptosis that can be regulated to generate an immune response. The genes involved in the processes can be regulated by drugs or inhibitors to amplify the effects of ICD and therefore serve as potential therapeutic targets. 
    more » « less
  2. ABSTRACT Coral reefs are increasingly threatened by disease outbreaks, yet little is known about the genetic mechanisms underlying disease resistance. Since the 1970s, White Band Disease (WBD) has decimated the Caribbean staghorn coralAcropora cervicornis. However, 15% or more of individuals are highly disease‐resistant, and the genes controlling the production of Argonaut proteins, involved in microRNA (miRNA) post‐transcriptional gene silencing, are up‐regulated in WBD‐resistant corals. This suggests that miRNAs may be key regulators of coral immunity. In this study, we conducted an in situ disease transmission experiment with five healthy‐exposed control tanks and five WBD‐exposed tanks, each containing 50A. cervicornisgenotypes, sampled over 7 days and then sequenced miRNAs from 12 replicate genotypes, including 12 WBD‐exposed and 12 healthy‐exposed control fragments from two time points. We identified 67bona fidemiRNAs inA. cervicornis, 3 of which are differentially expressed in disease‐resistant corals. We performed a phylogenetic comparison of miRNAs across cnidarians and found greater conservation of miRNAs in more closely related taxa, including all three differentially expressed miRNAs being conserved in more than oneAcroporacoral. One of the three miRNAs has putative genomic targets involved in the cnidarian innate immunity. In addition, community detection coupled with over‐representation analysis of our miRNA–messenger RNA (mRNA) target network found two key uniqueA. cervicornismiRNAs regulating multiple important immune‐related pathways such as Toll‐like receptor pathway, endocytosis, and apoptosis. These findings highlight how multiple miRNAs may help the coral host maintain immune homeostasis in the presence of environmental stress including disease. 
    more » « less
  3. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands. 
    more » « less
  4. Abstract Coral reefs are faced with almost complete destruction by the end of the century due to global warming unless humanity can cap global temperature rise. There is now a race to develop a diverse set of solutions to save coral reefs. In this perspective, a case is made for understanding the cell biology of coral–dinoflagellate symbiosis to help inform development of solutions for saving reefs. Laboratory model systems for the study of coral symbiosis, including the sea anemone Exaiptasia pallida, are featured as valuable tools in the fight to save corals. The roles of host innate immunity and inter-partner nutrient dynamics in the onset, ongoing maintenance, and dysregulation of symbiosis are reviewed and discussed. Key innate immune genes and pathways, such as glycan–lectin interactions, the sphingosine rheostat, and the cytokine transforming growth factor beta are shown to modulate a host immune response in the symbiotic state. An upset in the homeostatic inorganic nutrient balance during heat stress and high exogenous nutrient availability is credited with driving the partnership toward dysregulation and coral bleaching. Specific examples are given where knowledge of the cell biology of symbiosis is informing the development of solutions, including studies showing clear limitations in the value of partner switching and acclimatization protocols. Finally, emphasis is placed on rapid advancement of knowledge to try to meet the urgent need for solutions. This includes real-time open communication with colleagues on successes and failures, sharing of resources and information, and working together in the spirit of a collective mission to save coral reefs. 
    more » « less
  5. Since 2014, corals within Florida’s Coral Reef have been dying at an unprecedented rate due to stony coral tissue loss disease (SCTLD). Here we describe the transcriptomic outcomes of three different SCTLD transmission experiments performed at the Smithsonian Marine Station and Mote Marine Laboratory between 2019 and 2020 on the corals Orbicella faveolata and Montastraea cavernosa. Overall, diseased O. faveolata had 2194 differentially expressed genes (DEGs) compared with healthy colonies, whereas diseased M. cavernosa had 582 DEGs compared with healthy colonies. Many significant DEGs were implicated in immunity, extracellular matrix rearrangement, and apoptosis. These included, but not limited to, peroxidases, collagens, Bax-like, fibrinogen-like, protein tyrosine kinase, and transforming growth factor beta. A gene module was identified that was significantly correlated to disease transmission. This module possessed many apoptosis and immune genes with high module membership indicating that a complex apoptosis and immune response is occurring in corals during SCTLD transmission. Overall, we found that O. faveolata and M. cavernosa exhibit an immune, apoptosis, and tissue rearrangement response to SCTLD. We propose that future studies should focus on examining early time points of infection, before the presence of lesions, to understand the activating mechanisms involved in SCTLD. 
    more » « less