skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An optimized growth medium for increased recombinant protein secretion titer via the type III secretion system
Abstract Background Protein secretion in bacteria is an attractive strategy for heterologous protein production because it retains the high titers and tractability of bacterial hosts while simplifying downstream processing. Traditional intracellular production strategies require cell lysis and separation of the protein product from the chemically similar cellular contents, often a multi-step process that can include an expensive refolding step. The type III secretion system of Salmonella enterica Typhimurium transports proteins from the cytoplasm to the extracellular environment in a single step and is thus a promising solution for protein secretion in bacteria. Product titer is sensitive to extracellular environmental conditions, however, and T3SS regulation is integrated with essential cellular functions. Instead of attempting to untangle a complex web of regulatory input, we took an “outside-in” approach to elucidate the effect of growth medium components on secretion titer. Results We dissected the individual and combined effects of carbon sources, buffers, and salts in a rich nutrient base on secretion titer. Carbon sources alone decreased secretion titer, secretion titer increased with salt concentration, and the combination of a carbon source, buffer, and high salt concentration had a synergistic effect on secretion titer. Transcriptional activity measured by flow cytometry showed that medium composition affected secretion system activity, and prolonged secretion system activation correlated strongly with increased secretion titer. We found that an optimal combination of glycerol, phosphate, and sodium chloride provided at least a fourfold increase in secretion titer for a variety of proteins. Further, the increase in secretion titer provided by the optimized medium was additive with strain enhancements. Conclusions We leveraged the sensitivity of the type III secretion system to the extracellular environment to increase heterologous protein secretion titer. Our results suggest that maximizing secretion titer via the type III secretion system is not as simple as maximizing secreted protein expression—one must also optimize secretion system activity. This work advances the type III secretion system as a platform for heterologous protein secretion in bacteria and will form a basis for future engineering efforts.  more » « less
Award ID(s):
1706125
PAR ID:
10311798
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Microbial Cell Factories
Volume:
20
Issue:
1
ISSN:
1475-2859
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ellermeier, Craig D (Ed.)
    ABSTRACT Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers. Here, we investigated this link with the PrgI protein, the monomer of the secretory channel of the type 3 secretion system (T3SS) ofSalmonella enterica. Despite detailed knowledge of the PrgI needle’s assembly and structure, little is known about how its structure influences its secretory capabilities. To study this, we recently constructed a comprehensive codon mutagenesis library of the PrgI protein utilizing a novel one-pot recombineering approach. We then screened this library for functional T3SS assembly and secretion titer by measuring the secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to construct a first-of-its-kind secretion fitness landscape to characterize the PrgI needle’s mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We discovered new design rules for building a functional T3SS as well as identified hypersecreting mutants. This work can be used to increase understanding of the T3SS’s assembly and identify further targets for engineering. This work also provides a blueprint for future efforts to engineer other complex protein assemblies through the construction of fitness landscapes.IMPORTANCEProtein secretion offers a simplified alternative method for protein purification from bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are still hindered by low yields relative to traditional protein purification strategies. Engineers are now seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic manipulations. In this study, we demonstrate that protein engineering strategies focused on altering the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses on how changes to the PrgI needle protein from the type 3 secretion system fromSalmonella entericacan impact secretion titer. We demonstrate that this complex is amenable to comprehensive mutagenesis studies and that this can yield both PrgI variants with increased secretory capabilities and insight into the normal functioning of the type 3 secretion system. 
    more » « less
  2. Plants elicit defense responses when exposed to pathogens, which partly contribute to the resistance of plants to Agrobacterium tumefaciens–mediated transformation. Some pathogenic bacteria have sophisticated mechanisms to counteract these defense responses by injecting Type III effectors (T3Es) through the Type III secretion system (T3SS). By engineering A. tumefaciens to express T3SS to deliver T3Es, we suppressed plant defense and enhanced plant genetic transformation. Here, we describe the optimized protocols for mobilization of T3SS-expressing plasmid to engineer A. tumefaciens to deliver proteins through T3SS and fractionation of cultures to study proteins from pellet and supernatants to determine protein secretion from engineered A. tumefaciens. 
    more » « less
  3. null (Ed.)
    Multiple gram-negative bacteria encode type III secretion systems (T3SS) that allow them to inject effector proteins directly into host cells to facilitate colonization. To be secreted, effector proteins must be at least partially unfolded to pass through the narrow needle-like channel (diameter <2 nm) of the T3SS. Fusion of effector proteins to tightly packed proteins—such as GFP, ubiquitin, or dihydrofolate reductase (DHFR)—impairs secretion and results in obstruction of the T3SS. Prior observation that unfolding can become rate-limiting for secretion has led to the model that T3SS effector proteins have low thermodynamic stability, facilitating their secretion. Here, we first show that the unfolding free energy ( Δ G unfold 0 ) of two Salmonella effector proteins, SptP and SopE2, are 6.9 and 6.0 kcal/mol, respectively, typical for globular proteins and similar to published Δ G unfold 0 for GFP, ubiquitin, and DHFR. Next, we mechanically unfolded individual SptP and SopE2 molecules by atomic force microscopy (AFM)-based force spectroscopy. SptP and SopE2 unfolded at low force ( F unfold ≤ 17 pN at 100 nm/s), making them among the most mechanically labile proteins studied to date by AFM. Moreover, their mechanical compliance is large, as measured by the distance to the transition state (Δ x ‡ = 1.6 and 1.5 nm for SptP and SopE2, respectively). In contrast, prior measurements of GFP, ubiquitin, and DHFR show them to be mechanically robust ( F unfold > 80 pN) and brittle (Δ x ‡ < 0.4 nm). These results suggest that effector protein unfolding by T3SS is a mechanical process and that mechanical lability facilitates efficient effector protein secretion. 
    more » « less
  4. Graf, Joerg (Ed.)
    Intestinal microbes, whether resident or transient, influence the physiology of their hosts, altering both the chemical and the physical characteristics of the gut. An example of the latter is the human pathogenVibrio cholerae’sability to induce strong mechanical contractions, discovered in zebrafish. The underlying mechanism has remained unknown, but the phenomenon requires the actin crosslinking domain (ACD) ofVibrio’s type VI secretion system (T6SS), a multicomponent protein syringe that pierces adjacent cells and delivers toxins. By using a zebrafish-nativeVibrioand imaging-based assays of host intestinal mechanics and immune responses, we find evidence that macrophages mediate the connection between the T6SS ACD and intestinal activity. Inoculation withVibriogives rise to strong, ACD-dependent, gut contractions whose magnitude resembles those resulting from genetic depletion of macrophages.Vibrioalso induces tissue damage and macrophage activation, both ACD-dependent, recruiting macrophages to the site of tissue damage and away from their unperturbed positions near enteric neurons that line the midgut and regulate intestinal motility. Given known crosstalk between macrophages and enteric neurons, our observations suggest that macrophage redistribution forms a key link betweenVibrioactivity and intestinal motility. In addition to illuminating host-directed actions of the widespread T6SS protein apparatus, our findings highlight how localized bacteria-induced injury can reshape neuro-immune cellular dynamics to impact whole-organ physiology. IMPORTANCEGut microbes, whether beneficial, harmful, or neutral, can have dramatic effects on host activities. The human pathogenVibrio choleraecan induce strong intestinal contractions, though how this is achieved has remained a mystery. Using a zebrafish-nativeVibrioand live imaging of larval fish, we find evidence that immune cells mediate the connection between bacteria and host mechanics. A piece ofVibrio’s type VI secretion system, a syringe-like apparatus that stabs cellular targets, induces localized tissue damage, activating macrophages and drawing them from their normal residence near neurons, whose stimulation of gut contractions they dampen, to the damage site. Our observations reveal a mechanism in which cellular rearrangements, rather than bespoke biochemical signaling, drives a dynamic neuro-immune response to bacterial activity. 
    more » « less
  5. Sogaard-Andersen, Lotte (Ed.)
    ABSTRACT Surface motility powered by type IV pili (T4P) is widespread among bacteria, including the photosynthetic cyanobacteria. This form of movement typically requires the deposition of a motility-associated polysaccharide, and several studies indicate that there is complex coregulation of T4P motor activity and polysaccharide production, although a mechanistic understanding of this coregulation is not fully defined. Here, using a combination of genetic, comparative genomic, transcriptomic, protein-protein interaction, and cytological approaches in the model filamentous cyanobacterium N. punctiforme , we provided evidence that a DnaK-type chaperone system coupled the activity of the T4P motors to the production of the motility-associated hormogonium polysaccharide (HPS). The results from these studies indicated that DnaK1 and DnaJ3 along with GrpE comprised a chaperone system that interacted specifically with active T4P motors and was required to produce HPS. Genomic conservation in cyanobacteria and the conservation of the protein-protein interaction network in the model unicellular cyanobacterium Synechocystis sp. strain PCC 6803 imply that this system is conserved among nearly all motile cyanobacteria and provides a mechanism to coordinate polysaccharide secretion and T4P activity in these organisms. IMPORTANCE Many bacteria, including photosynthetic cyanobacteria, exhibit type IV pili (T4P) driven surface motility. In cyanobacteria, this form of motility facilitates dispersal, phototaxis, the formation of supracellular structures, and the establishment of nitrogen-fixing symbioses with eukaryotes. T4P-powered motility typically requires the deposition of motility-associated polysaccharides, and previous studies indicate that T4P activity and polysaccharide production are intimately linked. However, the mechanism by which these processes are coupled is not well defined. Here, we identified and characterized a DnaK(Hsp70)-type chaperone system that coordinates these two processes in cyanobacteria. 
    more » « less