Substantial marine, terrestrial, and atmospheric changes have occurred over the Greenland region during the last century. Several studies have documented record‐levels of Greenland Ice Sheet (GrIS) summer melt extent during the 2000s and 2010s, but relatively little work has been carried out to assess regional climatic changes in other seasons. Here, we focus on the less studied cold‐season (i.e., autumn and winter) climate, tracing the long‐term (1873–2013) variability of Greenland's air temperatures through analyses of coastal observations and model‐derived outlet glacier series and their linkages with North Atlantic sea ice, sea surface temperature (SST), and atmospheric circulation indices. Through a statistical framework, large amounts of west and south Greenland temperature variance (up to
- Award ID(s):
- 1734760
- Publication Date:
- NSF-PAR ID:
- 10312001
- Journal Name:
- Climate Dynamics
- ISSN:
- 0930-7575
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract r 2 ~ 50%) can be explained by the seasonally‐contemporaneous combination of the Greenland Blocking Index (GBI) and the North Atlantic Oscillation (NAO; hereafter the combination of GBI and NAO is termed GBI). Lagged and concomitant regional sea‐ice concentration (SIC) and the Atlantic Multidecadal Oscillation (AMO) seasonal indices account for small amounts of residual air temperature variance (r 2 < ~10%) relative to the GBI. The correlations between GBI and cold‐season temperatures are predominantly positive and statistically‐significant through time, while regional SIC conditions emerge as a significant covariate from the mid‐20th century throughmore » -
Abstract Hydroclimate extremes in North America, Europe, and the Mediterranean are linked to ocean and atmospheric circulation anomalies in the Atlantic, but the limited length of the instrumental record prevents complete identification and characterization of these patterns of covariability especially at decadal to centennial time scales. Here we analyze the coupled patterns of drought variability on either sides of the North Atlantic Ocean basin using independent climate field reconstructions spanning the last millennium in order to detect and attribute epochs of coherent basin‐wide moisture anomalies to ocean and atmosphere processes. A leading mode of broad‐scale moisture variability is characterized by distinct patterns of North Atlantic atmosphere circulation and sea surface temperatures. We infer a negative phase of the North Atlantic Oscillation and colder Atlantic sea surface temperatures in the middle of the fifteenth century, coincident with weaker solar irradiance and prior to strong volcanic forcing associated with the early Little Ice Age.
-
Proxy evidence is necessary to place current temperature and hydroclimatic changes in a long‐term context and to assess the full range of natural and anthropogenic climate forcings. Here, we present the first millennium‐length reconstruction of late summer (August–September) temperature variability for the Mediterranean region. We compiled 132 maximum latewood density (MXD) tree‐ring series of living and relict
Pinus heldreichii trees from a network of four high‐elevation sites in the Pindus Mountains of Greece. Forty series reach back into the first millennium and the oldest sample dates to 575 CE. At annual to decadal scales, the record correlates significantly with August–September temperatures over the Balkan Peninsula and northeastern Mediterranean (r 1950–2014= 0.71,p < 0.001). We produce two reconstructions emphasizing interannual and decadal scale variance over the past millennium. Analysis of temperature extremes reveals the coldest summers occurred in 1035, 1117, 1217, 1884 and 1959 and the coldest decades were 1061–1070 and 1811–1820. The warmest summers occurred in 1240 and 1474, and the warmest decades were 1141–1150 and 1481–1490. Comparison of this new reconstruction with MXD‐based summer temperature reconstructions across Europe reveals synchronized occurrences of extreme cool summers in the northeastern Mediterranean, and an antiphase‐relationship with warm summer temperatures over the British Isles and Scandinavia. Thismore » -
Abstract The role of ocean forcing on Atlantic multidecadal variability (AMV) is assessed from the (downward) heat flux–SST relation in the framework of a new stochastic climate theory forced by red noise ocean forcing. Previous studies suggested that atmospheric forcing drives SST variability from monthly to interannual time scales, with a positive heat flux–SST correlation, while heat flux induced by ocean processes can drive SST variability at decadal and longer time scales, with a negative heat flux–SST correlation. Here, first, we develop a theory to show how the sign of heat flux–SST correlation is affected by atmospheric and oceanic forcing with time scale. In particular, a red noise ocean forcing is necessary for the sign reversal of heat flux–SST correlation. Furthermore, this sign reversal can be detected equivalently in three approaches: the low-pass correlation at lag zero, the unfiltered correlation at long (heat flux) lead, and the real part of the heat flux–SST coherence. Second, we develop a new scheme in combination with the theory to assess the magnitude and time scale of the red noise ocean forcing for AMV in the GFDL SPEAR model (Seamless System for Prediction and Earth System Research) and observations. In both the model andmore »
Significance Statement A new theoretical framework is developed to estimate the ocean forcing on Atlantic multidecadal variability form heat flux–SST relations in climate models and observation. Our estimation shows the ocean forcing is comparable with the atmospheric forcing and, in particular, has a slow time scale of years.
-
Abstract In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distributionmore »