skip to main content


Title: Observational analysis of decadal and long-term hydroclimate drivers in the Mediterranean region: role of the ocean–atmosphere system and anthropogenic forcing
Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population.  more » « less
Award ID(s):
1734760
NSF-PAR ID:
10312001
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Climate Dynamics
ISSN:
0930-7575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Substantial marine, terrestrial, and atmospheric changes have occurred over the Greenland region during the last century. Several studies have documented record‐levels of Greenland Ice Sheet (GrIS) summer melt extent during the 2000s and 2010s, but relatively little work has been carried out to assess regional climatic changes in other seasons. Here, we focus on the less studied cold‐season (i.e., autumn and winter) climate, tracing the long‐term (1873–2013) variability of Greenland's air temperatures through analyses of coastal observations and model‐derived outlet glacier series and their linkages with North Atlantic sea ice, sea surface temperature (SST), and atmospheric circulation indices. Through a statistical framework, large amounts of west and south Greenland temperature variance (up tor2 ~ 50%) can be explained by the seasonally‐contemporaneous combination of the Greenland Blocking Index (GBI) and the North Atlantic Oscillation (NAO; hereafter the combination of GBI and NAO is termed GBI). Lagged and concomitant regional sea‐ice concentration (SIC) and the Atlantic Multidecadal Oscillation (AMO) seasonal indices account for small amounts of residual air temperature variance (r2 < ~10%) relative to the GBI. The correlations between GBI and cold‐season temperatures are predominantly positive and statistically‐significant through time, while regional SIC conditions emerge as a significant covariate from the mid‐20th century through the conclusion of the study period. The inclusion of the cold‐season Pacific Decadal Oscillation (PDO) in multivariate analyses bolsters the air temperature variance explained by the North Atlantic regional predictors, suggesting the remote, background climate state is important to long‐term Greenland temperature variability. These findings imply that large‐scale tropospheric circulation has a strong control on surface temperature over Greenland through dynamic and thermodynamic impacts and stress the importance of understanding the evolving two‐way linkages between the North Atlantic marine and atmospheric environment in order to more accurately predict Greenland seasonal climate variability and change through the 21st century.

     
    more » « less
  2. Abstract

    Hydroclimate extremes in North America, Europe, and the Mediterranean are linked to ocean and atmospheric circulation anomalies in the Atlantic, but the limited length of the instrumental record prevents complete identification and characterization of these patterns of covariability especially at decadal to centennial time scales. Here we analyze the coupled patterns of drought variability on either sides of the North Atlantic Ocean basin using independent climate field reconstructions spanning the last millennium in order to detect and attribute epochs of coherent basin‐wide moisture anomalies to ocean and atmosphere processes. A leading mode of broad‐scale moisture variability is characterized by distinct patterns of North Atlantic atmosphere circulation and sea surface temperatures. We infer a negative phase of the North Atlantic Oscillation and colder Atlantic sea surface temperatures in the middle of the fifteenth century, coincident with weaker solar irradiance and prior to strong volcanic forcing associated with the early Little Ice Age.

     
    more » « less
  3. Proxy evidence is necessary to place current temperature and hydroclimatic changes in a long‐term context and to assess the full range of natural and anthropogenic climate forcings. Here, we present the first millennium‐length reconstruction of late summer (August–September) temperature variability for the Mediterranean region. We compiled 132 maximum latewood density (MXD) tree‐ring series of living and relictPinus heldreichiitrees from a network of four high‐elevation sites in the Pindus Mountains of Greece. Forty series reach back into the first millennium and the oldest sample dates to 575 CE. At annual to decadal scales, the record correlates significantly with August–September temperatures over the Balkan Peninsula and northeastern Mediterranean (r1950–2014= 0.71,p< 0.001). We produce two reconstructions emphasizing interannual and decadal scale variance over the past millennium. Analysis of temperature extremes reveals the coldest summers occurred in 1035, 1117, 1217, 1884 and 1959 and the coldest decades were 1061–1070 and 1811–1820. The warmest summers occurred in 1240 and 1474, and the warmest decades were 1141–1150 and 1481–1490. Comparison of this new reconstruction with MXD‐based summer temperature reconstructions across Europe reveals synchronized occurrences of extreme cool summers in the northeastern Mediterranean, and an antiphase‐relationship with warm summer temperatures over the British Isles and Scandinavia. This temperature dipole is related to anomalies in the latitudinal position of the North Atlantic Jet. Despite the representation of common atmospheric forcing patterns, the occurrence of warm extremes is limited to few events, suggesting potential weaknesses of MXD to record warm temperature anomalies. In addition, we acknowledge problems in the observational data to capture local temperature variability due to small scale topographic differences in this high‐elevation landscape. At a broader geographical scale, the occurrence of common cold summer extremes is restricted to years with volcanically induced changes in radiative forcing.

     
    more » « less
  4. Abstract

    The role of ocean forcing on Atlantic multidecadal variability (AMV) is assessed from the (downward) heat flux–SST relation in the framework of a new stochastic climate theory forced by red noise ocean forcing. Previous studies suggested that atmospheric forcing drives SST variability from monthly to interannual time scales, with a positive heat flux–SST correlation, while heat flux induced by ocean processes can drive SST variability at decadal and longer time scales, with a negative heat flux–SST correlation. Here, first, we develop a theory to show how the sign of heat flux–SST correlation is affected by atmospheric and oceanic forcing with time scale. In particular, a red noise ocean forcing is necessary for the sign reversal of heat flux–SST correlation. Furthermore, this sign reversal can be detected equivalently in three approaches: the low-pass correlation at lag zero, the unfiltered correlation at long (heat flux) lead, and the real part of the heat flux–SST coherence. Second, we develop a new scheme in combination with the theory to assess the magnitude and time scale of the red noise ocean forcing for AMV in the GFDL SPEAR model (Seamless System for Prediction and Earth System Research) and observations. In both the model and observations, the ocean forcing on AMV is in general comparable with the atmospheric forcing, with a 90% probability greater than the atmospheric forcing in observations. In contrast to the white noise atmospheric forcing, the ocean forcing has a persistence time comparable or longer than a year, much longer than the SST persistence of ∼3 months. This slow ocean forcing is associated implicitly with slow subsurface ocean dynamics.

    Significance Statement

    A new theoretical framework is developed to estimate the ocean forcing on Atlantic multidecadal variability form heat flux–SST relations in climate models and observation. Our estimation shows the ocean forcing is comparable with the atmospheric forcing and, in particular, has a slow time scale of years.

     
    more » « less
  5. Abstract

    In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.

     
    more » « less