skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AI-Assisted Scientific Data Collection with Iterative Human Feedback
Although artificial intelligence has revolutionized data analysis, significantly less work has focused on using AI to improve scientific data collection. Past work in AI for data collection has typically assumed the objective function is well-defined by humans before starting an experiment; however, this is a poor fit for scientific domains where new discoveries and insights are made as data is being collected. In this paper we present a new framework to allow AI systems to work together with humans (e.g. scientists) to collect data more effectively in simple scientific domains. We present a novel algorithm, TESA, which seeks to achieve good performance by learning from past human behavior how to direct data to places that are likely to become scientifically interesting in the future. We analyze the problem theoretically, defining a novel notion of regret in this setting and showing that TESA is zero regret. Next, we show that TESA outperforms other related algorithms in simulations using real data drawn from three diverse domains (economics, mental health, and cognitive psychology). Finally, we run experiments with human subjects across these scientific domains to compare our iterative human-in-the-loop process to a (more standard) workflow in which information is communicated to the AI a priori.  more » « less
Award ID(s):
1942229
PAR ID:
10312317
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
35
Issue:
7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research within sociotechnical domains, such as Software Engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes. 
    more » « less
  2. Abstract In recent years, predictive machine learning models have gained prominence across various scientific domains. However, their black-box nature necessitates establishing trust in them before accepting their predictions as accurate. One promising strategy involves employing explanation techniques that elucidate the rationale behind a model’s predictions in a way that humans can understand. However, assessing the degree of human interpretability of these explanations is a nontrivial challenge. In this work, we introduce interpretation entropy as a universal solution for evaluating the human interpretability of any linear model. Using this concept and drawing inspiration from classical thermodynamics, we present Thermodynamics-inspired Explainable Representations of AI and other black-box Paradigms, a method for generating optimally human-interpretable explanations in a model-agnostic manner. We demonstrate the wide-ranging applicability of this method by explaining predictions from various black-box model architectures across diverse domains, including molecular simulations, text, and image classification. 
    more » « less
  3. null (Ed.)
    The Abstraction and Reasoning Corpus (ARC) is a set of tasks that tests an agent’s ability to flexibly solve novel problems. While most ARC tasks are easy for humans, they are challenging for state-of-the-art AI. How do we build intelligent systems that can generalize to novel situations and understand human instructions in domains such as ARC? We posit that the answer may be found by studying how humans communicate to each other in solving these tasks. We present LARC, the Language-annotated ARC: a collection of natural language descriptions by a group of human participants, unfamiliar both with ARC and with each other, who instruct each other on how to solve ARC tasks. LARC contains successful instructions for 88% of the ARC tasks. We analyze the collected instructions as ‘natural programs’, finding that most natural program concepts have analogies in typical computer programs. However, unlike how one precisely programs a computer, we find that humans both anticipate and exploit ambiguities to communicate effectively. We demonstrate that a state-of-the-art program synthesis technique, which leverages the additional language annotations, outperforms its language-free counterpart. 
    more » « less
  4. A hallmark of human intelligence is the ability to understand and influence other minds. Humans engage in inferential social learning (ISL) by using commonsense psychology to learn from others and help others learn. Recent advances in artificial intelligence (AI) are raising new questions about the feasibility of human–machine interactions that support such powerful modes of social learning. Here, we envision what it means to develop socially intelligent machines that can learn, teach, and communicate in ways that are characteristic of ISL. Rather than machines that simply predict human behaviours or recapitulate superficial aspects of human sociality (e.g. smiling, imitating), we should aim to build machines that can learn from human inputs and generate outputs for humans by proactively considering human values, intentions and beliefs. While such machines can inspire next-generation AI systems that learn more effectively from humans (as learners) and even help humans acquire new knowledge (as teachers), achieving these goals will also require scientific studies of its counterpart: how humans reason about machine minds and behaviours. We close by discussing the need for closer collaborations between the AI/ML and cognitive science communities to advance a science of both natural and artificial intelligence. This article is part of a discussion meeting issue ‘Cognitive artificial intelligence’. 
    more » « less
  5. Decaying infrastructure maintenance cost allocation depends heavily on accurate and safe inspection in the field. New tools to conduct inspections can assist in prioritizing investments in maintenance and repairs. The industrial revolution termed as “Industry 4.0” is based on the intelligence of machines working with humans in a collaborative workspace. Contrarily, infrastructure management has relied on the human for making day-to-day decisions. New emerging technologies can assist during infrastructure inspections, to quantify structural condition with more objective data. However, today’s owners agree in trusting the inspector’s decision in the field over data collected with sensors. If data collected in the field is accessible during the inspections, the inspector decisions can be improved with sensors. New research opportunities in the human–infrastructure interface would allow researchers to improve the human awareness of their surrounding environment during inspections. This article studies the role of Augmented Reality (AR) technology as a tool to increase human awareness of infrastructure in their inspection work. The domains of interest of this research include both infrastructure inspections (emphasis on the collection of data of structures to inform management decisions) and emergency management (focus on the data collection of the environment to inform human actions). This article describes the use of a head-mounted device to access real-time data and information during their field inspection. The authors leverage the use of low-cost smart sensors and QR code scanners integrated with Augmented Reality applications for augmented human interface with the physical environment. This article presents a novel interface architecture for developing Augmented Reality–enabled inspection to assist the inspector’s workflow in conducting infrastructure inspection works with two new applications and summarizes the results from various experiments. The main contributions of this work to computer-aided community are enabling inspectors to visualize data files from database and real-time data access using an Augmented Reality environment. 
    more » « less