Abstract. Secondary organic aerosol (SOA), formed through oxidation of volatile organic compounds (VOCs), displays complex viscosity and phase behaviorsinfluenced by temperature, relative humidity (RH), and chemical composition. Here, the efficacy of a multi-stage electrical low-pressure impactor(ELPI) for indirect water uptake measurements was studied for ammonium sulfate (AS) aerosol, sucrose aerosol, and α-pinene-derived SOA. Allthree aerosol systems were subjected to greater than 90 % chamber relative humidity, with subsequent analysis indicating persistence of particlebounce for sucrose aerosol of 70 nm (initial dry diameter) and α-pinene-derived SOA of number geometric mean diameters between 39 and136 nm (initial dry diameter). On the other hand, sucrose aerosol of 190 nm (initial dry diameter) and AS aerosol down to70 nm (initial dry diameter) exhibited no particle bounce at elevated RH. Partial drying of aerosol within the lower diameter ELPI impactionstages, where inherent and significant RH reductions occur, is proposed as one explanation for particle bounce persistence.
more »
« less
Hygroscopicity of Internally Mixed Ammonium Sulfate and Secondary Organic Aerosol Particles Formed at Low and High Relative Humidity
Volatile organic matter that is suspended in the atmosphere such as α-Pinene and β-caryophyllene undergoes aging processes, as well as chemical and photooxidation reactions to create secondary organic aerosol (SOA), which can influence the indirect effect of aerosol particles and the radiative budget. The presence and impact of water vapor and ammonium sulfate (ubiquitous species in the atmosphere) on the hygroscopicity and CCN activity of SOA has not been well characterized. In this research, three water-uptake measurement methods: cavity ring-down spectroscopy (CRD), humidified tandem differential mobility analysis (HTDMA), and cloud condensation nuclei counting (CCNC) were employed to study the hygroscopicity of α-pinene and β-caryophyllene SOA formed under dark ozonolysis. We observed the changes in water uptake of SOA in the absence and presence of water vapor at ~70 % RH and ammonium sulfate seeds. Measured hygroscopicity was represented by the single hygroscopicity parameter (κ). κ of α-pinene SOA was measured to be 0.04 and can increase up to 0.19 in the presence of water vapor and ammonium sulfate. β-caryophyllene SOA exhibited non-hygroscopic properties with κ values that were effectively 0. It is proposed that a difference in the viscosity and hydrophobicity of the SOA may be the primary factor that leads to changes in hygroscopicity.
more »
« less
- Award ID(s):
- 1723920
- PAR ID:
- 10312325
- Date Published:
- Journal Name:
- Environmental Science: Atmospheres
- ISSN:
- 2634-3606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nicole Riemer (Ed.)Aerosol particles in the atmosphere have the ability to uptake water and form droplets. The droplets formed can interact with solar radiation (indirect effect of aerosols) and influence the net radiative forcing. However, the magnitude of change in radiative forcing due to the indirect effect of aerosols remains uncertain due to the high variance in aerosol composition and mixing states, both spatial and temporally. As such, there is a need to measure the water-uptake of different aerosol particle groups under controlled conditions to gain insight into the water-uptake of complex ambient systems. In this work, the water-uptake (hygroscopicity) of internally and externally mixed ammonium sulfate – organic binary mixtures were directly measured via three methods and compared to droplet growth prediction models. We found that subsaturated water-uptake of ammonium sulfate-organic mixtures agreed with their supersaturated hygroscopicity, and mixing state information was able to be retrieved at both humidity regimes. In addition, we found that solubility-adjusted models may not be able to capture the water-uptake of viscous particles, and for soluble organic aerosol particles, bulk solubility may not be comparable to their solubility in a droplet. This work highlights the importance of using multiple complementary water-uptake measurement instruments to get a clearer picture of mixed aerosol particle hygroscopicity, especially for increasingly complex systems.more » « less
-
The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data under varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night.more » « less
-
Abstract We investigated the photosensitizing properties of secondary organic aerosol (SOA) formed during the hydroxyl radical (OH) initiated oxidation of naphthalene. This SOA was injected into an aerosol flow tube and exposed to UV radiation and gaseous volatile organic compounds or sulfur dioxide (SO2). The aerosol particles were observed to grow in size by photosensitized uptake of d‐limonene and β‐pinene. In the presence of SO2, a photosensitized production (0.2–0.3 µg m−3 h−1) of sulfate was observed at all relative humidity (RH) levels. Some sulfate also formed on particles in the dark, probably due to the presence of organic peroxides. The dark and photochemical pathways exhibited different trends with RH, unraveling different contributions from bulk and surface chemistry. As naphthalene and other polycyclic aromatics are important SOA precursors in the urban and suburban areas, these dark and photosensitized reactions are likely to play an important role in sulfate and SOA formation.more » « less
-
The effect of precursor molecular structural features on secondary organic aerosol (SOA) growth was investigated for a number of precursor functional groups. SOA yields were determined for straight chain alkanes, some oxygenated, up to highly functionalized hydrocarbons, the largest being β-caryophyllene. Organic SOA yield was determined by comparing to standard particle size changes with SO 2 in a photolytic flow reactor. SOA formation was initiated with OH radicals from HONO photolysis and continued with NO and NO 2 present at single-digit nmol/mol levels. Seed particles of ∼10 nm diameter grew by condensation of SOA material and growth was monitored with a nanoparticle sizing system. Cyclic compounds dominate as the highest SOA yielding structural feature, followed by C-10 species with double bonds, with linear alkanes and isoprene most ineffective. Carbonyls led to significant increases in growth compared to the alkanes while alcohols, triple-bond compounds, aromatics, and epoxides were only slightly more effective than alkanes at producing SOA. When more than one double bond is present, or a double bond is present with another functional group as seen with 1, 2-epoxydec-9-ene, SOA yield is notably increased. Placement of the double bond is important as well with β-pinene having an SOA yield approximately 5 times that of α-pinene. In our photolytic flow reactor, first-generation oxidation products are presumed to be the primary species contributing to SOA thus the molecular structure of the precursor is determinant. We also conducted proton-transfer mass spectrometry measurements of α-pinene photooxidation and significant signals were observed at masses for multifunctional nitrates and possibly peroxy radicals. The mass spectrometer measurements were also used to estimate a HONO photolysis rate.more » « less
An official website of the United States government

