- PAR ID:
- 10312369
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 22
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Khoo, Iam Choon (Ed.)We explore the structures and confinement-induced edge dislocations in Grandjean-Cano wedge cells filled with the recently discovered chiral ferroelectric nematic (N_F^*) and chiral antiferroelectric smectic-Z 〖(SmZ〗_A^*). The chiral mixture is formed by DIO mesogen doped with a chiral additive. Wedge cells with parallel and antiparallel rubbing at the opposite plates show quantitatively different structures which is attributed to the polar in-plane anchoring of the spontaneous polarization at the rubbed substrates. The helical pitch shows a non-monotonous temperature dependence upon cooling, increasing as the temperature is lowered to the N^*-SmZ_A^* phase transition. The SmZ_A^* formed from an untwisted N^* in the thin portion of the wedge shows a bookshelf (BK) geometry, whereas the twisted N^* transforms into a twisted planar (PA) SmZ_A^* structure. In the N_F^* phase, the untwisted N^* becomes twisted in a wedge with antiparallel assembly of plates and monodomain in wedges with parallel assembly. The twisted regions of N_F^* show only one type of Grandjean zones separated by thick edge dislocations with Burgers vector b=P; the neighboring regions differ by 2π- twist.more » « less
-
Abstract Surface interactions are responsible for many properties of condensed matter, ranging from crystal faceting to the kinetics of phase transitions. Usually, these interactions are polar along the normal to the interface and apolar within the interface. Here we demonstrate that polar in-plane surface interactions of a ferroelectric nematic N F produce polar monodomains in micron-thin planar cells and stripes of an alternating electric polarization, separated by $${180}^{{{{{{\rm{o}}}}}}}$$ 180 o domain walls, in thicker slabs. The surface polarity binds together pairs of these walls, yielding a total polarization rotation by $${360}^{{{{{{\rm{o}}}}}}}$$ 360 o . The polar contribution to the total surface anchoring strength is on the order of 10%. The domain walls involve splay, bend, and twist of the polarization. The structure suggests that the splay elastic constant is larger than the bend modulus. The $${360}^{{{{{{\rm{o}}}}}}}$$ 360 o pairs resemble domain walls in cosmology models with biased vacuums and ferromagnets in an external magnetic field.more » « less
-
We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm 2 , the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction.more » « less
-
Abstract The discovery of polar vortices and skyrmions in ferroelectric‐dielectric superlattices [such as (PbTiO3)
n /(SrTiO3)n ] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non‐polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli. Here, using advanced thin‐film deposition and an array of characterization and simulation approaches, polar vortices are realized in all‐ferroelectric trilayers, multilayers, and superlattices built from the fundamental building block of (PbTiO3)n /(Pbx Sr1−x TiO3)n wherein in‐plane ferroelectric polarization in the Pbx Sr1−x TiO3provides the appropriate boundary conditions. These superlattices exhibit substantially enhanced electromechanical and ferroelectric responses in the out‐of‐plane direction that arise from the ability of the polarization in both layers to rotate to the out‐of‐plane direction under field. In the in‐plane direction, the layers are found to be strongly coupled during switching and when heterostructured with ferroelectric‐dielectric building blocks, it is possible to produce multistate switching. This approach expands the realm of systems supporting emergent dipolar texture formation and does so with entirely ferroelectric materials thus greatly improving their responses. -
The success of nematic liquid crystals in displays and optical applications is due to the combination of their optical uniaxiality, fluidity, elasticity, responsiveness to electric fields and controllable coupling of the molecular orientation at the interface with solid surfaces. The discovery of a polar nematic phase opens new possibilities for liquid crystal-based applications, but also requires a new study of how this phase couples with surfaces. Here we explore the surface alignment of the ferroelectric nematic phase by testing different rubbed and unrubbed substrates that differ in coupling strength and anchoring orientation and find a variety of behaviors – in terms of nematic orientation, topological defects and electric field response – that are specific to the ferroelectric nematic phase and can be understood as a consequence of the polar symmetry breaking. In particular, we show that by using rubbed polymer surfaces it is easy to produce cells with a planar polar preferential alignment and that cell electrostatics ( e.g. grounding the electrodes) has a remarkable effect on the overall homogeneity of the ferroelectric ordering.more » « less