skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Queering Design in Alaska
This paper examines how a small cadre of builders are “queering” design in Alaska. Specifically, it draws on 13 months of ethnographic fieldwork to introduce the concept of “design queering” as an analytical framework for situating the creative practices of housing designers within wider debates about housing insecurity and activism in the Panarctic. This requires drawing on queer theory (e.g., Hayward 2010; Hayward and Che 2017; Boyce, Gonzalez-Polledo, and Posocco 2020) to describe how a set of intersecting experiences inspired this small group of builders to develop a kit-of-parts prototype. This prototype is influenced by the lessons these builders learned while collaborating with rural Alaskan communities on building projects where they witnessed how contemporary construction methods pollute landscapes and force homeowners into what Michelle Murphy has termed “regimes of chemical living” (2008). Later, through their own personal research efforts they began to weave together a set of construction principles for decolonizing the building industry, both in Alaska and beyond. These principles include design for disassembly, designing for the circular economy, and the notion of home ownership as a human right. By mapping out how this prototype came into being through the “queering” of housing design, this paper explores what a “future beyond crisis” might look like from the perspective of a small group of builders who are invested in transforming the structural inequalities produced by construction industries in Alaska and beyond.  more » « less
Award ID(s):
2103556
NSF-PAR ID:
10312447
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
European Network for Queer Anthropology (ENQA) Workshop 2021: Futures beyond Crises, 16 & 17 Sept 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Addressing the 2023 theme of Global Responsibilities of Engineers, in particular the disproportionate impacts of climate change on communities in remote regions of Alaska, this paper tracks the “social life” of a prefabricated frame assembly system designed for constructing homes in emergency contexts in northern Alaska (Appadurai 1986). An Alaskan housing research center began using this prefabricated system over a decade ago, in a time of crisis caused by major spring flooding in an Alaskan riverine community that has long grappled with housing shortages. The destruction of these homes, along with the possessions of the people living in them, was a tremendous loss to this community. The region’s short building season and dependency on barge and aerial transportation services for shipping in building supplies further compounded these challenges. In response, local and federal agencies came together and decided on a housing design that uses an integrated wall and truss system that could be prefabricated off-site, shipped out, rapidly assembled by volunteer building crews in the affected site, and that facilitated a highly insulated energy efficient home. As a result, this design played a critical role in mediating further disaster. Fast-forward to the present, the housing research center continues to opt for this system for most remote designs, but builders and engineers have begun to debate whether its advantages outweigh some of its logistical challenges. Some argue that its value has been overstated, while others describe it as a practical and affordable method for building energy efficient homes in remote Alaskan communities. Still others have adapted its design to fit their needs, thus producing new variations of the design, while also showing how the design of this building system might be reimagined. A deep dive into this debate provides an opportunity to analyze how both knowledge building and moral stances inform the ways that engineers assume global responsibilities related to communities affected by climate change. Drawing on three years of ethnographic research among Alaskan engineers, builders, housing advocates, and community stakeholders, this case study reflects what design scholars describe) as the “moralization of technology” through engineering practices (Verbeek 2006: 269). From this perspective, engineering systems may take on multiple meanings and applications, including marking differences in thought, creativity, and moral affinity among experts who are working to addressing affordable housing needs in Alaska. Reflecting on these differences in perspective, this paper tracks the “cultural biography” of this engineered system across time, place, and institutional, cultural, and geographic settings to probe how debates about the efficacy of this prefabricated system come to index varying moral stances and value systems that are deeply qualitative but also very much a part of the technical and materializing processes of the building design (Kopytoff 1986). As a case study, this analysis also can serve as a teaching tool in engineering and interdisciplinary classrooms for examining the integrative nature of ethics and technology as related to a range of human impacts on the environment and marginalized communities. 
    more » « less
  2. This paper draws on ethnographic fieldwork conducted with Alaskan engineers, builders, and housing experts on cold climate housing design in Native Alaskan communities and explores multiple levels of challenges to designing and building in remote areas. It examines how the history of land ownership and governance in Alaska shapes the imaginaries of engineers and builders working to address housing equity in the state. Specifically, we study cold climate housing projects being carried out in Alaska and compare the design of these projects to wider colonial legacies and failed housing policies. This includes examining both considerations that need to be made at the start of design and engineering projects, as well as how complexity figures into the culture of cold climate engineers and builders in Alaska. Theoretically, this paper draws on Annemarie Mol and John Law’s conceptualization of complexity as a social practice (2002), in which they argue against reductionism by calling attention to the “multiplicity” of ways in which actions and knowledge come into being. In drawing on this work, we seek to engage with multiple histories and worldviews, including dominant notions of “home” that contribute to reproducing housing insecurity and colonial legacies in rural communities (Christensen 2017). Building on this theoretical framework, we thread together a critical description of the social terrain in which engineering and building projects in remote Alaska Native communities are situated. Such situated understandings necessitate engineers and builders working on these projects to think locally while recognizing the broader contributions of home designs developed thousands of miles from the Arctic. The implications of this complexity, we argue, are important for engineering educators and students to incorporate in their approaches to design and engineering learning opportunities across multiple contexts, including engineering programs, construction, architecture, industrial design, environmental and sustainability science, and the social sciences. To address complex challenges in which these disciplines must all take part, engineers and others who make up these teams of diverse expertise must navigate layers of complexity and understand and value how social forces shape building projects. Cold climate contexts like the ones we describe here provide examples that can engage educators, learners, and practitioners. 
    more » « less
  3. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.)
    https://pressbooks.lib.vt.edu/alaskanative/ At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less
  4. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of openground- story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less
  5. Although organizations build housing in resource-limited contexts after typhoons and other disasters that is intended to be safer than what existed previously, the performance of these houses in future typhoons—and the factors influencing performance—are unknown. This study develops a component-level, performance-based wind engineering assessment framework and evaluates the wind performance of twelve semi-engineered post-disaster housing designs, representing thousands of houses that were constructed in the Philippines after Typhoon Yolanda. We found that roof panel loss likely occurs first for most designs, at wind speeds equivalent to a category 2 hurricane/signal 3 typhoon. Roof shape determines whether this loss is caused by failure at the panel-fastener interface or purlin-to-truss connection. However, houses with wooden frames and woven bamboo walls may also experience catastrophic racking failures at wind speeds equivalent to signal 2 or 3 typhoons, a situation exacerbated by strengthening the roof. Results also show that wind performance varied with roof shape, component spacing, panel thickness, eave length and connection between purlin and truss. Organizations can use these results to improve housing performance, taking specific care to increase wall capacity. This framework can be expanded to assess housing performance in other resource-limited contexts.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less