Abstract Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems.Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.
more »
« less
Species-area and network-area relationships in host–helminth interactions
The scaling relationship observed between species richness and the geographical area sampled (i.e. the species-area relationship (SAR)) is a widely recognized macroecological relationship. Recently, this theory has been extended to trophic interactions, suggesting that geographical area may influence the structure of species interaction networks (i.e. network-area relationships (NARs)). Here, we use a global dataset of host–helminth parasite interactions to test existing predictions from macroecological theory. Scaling between single locations to the global host–helminth network by sequentially adding networks together, we find support that geographical area influences species richness and the number of species interactions in host–helminth networks. However, species-area slopes were larger for host species relative to their helminth parasites, counter to theoretical predictions. Lastly, host–helminth network modularity—capturing the tendency of the network to form into separate subcommunities—decreased with increasing area, also counter to theoretical predictions. Reconciling this disconnect between existing theory and observed SAR and NAR will provide insight into the spatial structuring of ecological networks, and help to refine theory to highlight the effects of network type, species distributional overlap, and the specificity of trophic interactions on NARs.
more »
« less
- Award ID(s):
- 2021909
- PAR ID:
- 10312498
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 288
- Issue:
- 1947
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species–area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem’s habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species’ traits, larger and more branched “complex” networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.more » « less
-
Abstract Increases in species richness with habitat area (species–area relationship, or SAR) and increases in ecosystem function with species richness (biodiversity–ecosystem functioning, or BEF) are widely studied ecological patterns. Incorporating functional trait analysis into assemblage datasets may help clarify interpretations of SAR and BEF relationships in natural ecological systems. For example, life history theory can be used to make predictions about what species are most important in generating ecosystem function given a certain set of environmental conditions. We used quantitative assemblage data for freshwater mussels at nine sites in western Alabama, USA, to test for SAR and BEF relationships. At each site, we calculated species richness, mussel assemblage density, and two fundamental metrics of ecosystem function: biomass and secondary production. We also tested whether the proportional biomass and production contributions from species belonging to each of three life history strategies—opportunistic strategistsadapted to unstable or frequently disturbed habitats,periodic strategistsadapted to habitats subject to predictable large‐scale disturbances, andequilibrium strategistsadapted to stable habitats—varied longitudinally with stream drainage area, a proxy for habitat area. Species richness increased with stream size (SAR), and both biomass and production increased with species richness (BEF) and mussel density. There were few longitudinal changes in the proportional contributions of the different life history strategy classifications that we used, but the invasive clamCorbicula flumineacontributed proportionally more biomass and production at sites that had smaller drainage areas. This study provides further evidence for a clear longitudinal SAR in stream‐dwelling taxa. It also suggests BEF relationships for biomass and secondary production in natural assemblages but underscores the importance of assemblage density in BEF studies that use observational field data. Variation in proportional biomass and production contributions by different life history strategies was likely limited by the size of the stream size gradient in our study, as contributions were uniformly high for species with life history traits better adapted to stable and productive habitats such as mid‐sized rivers with low or predictable hydrologic disturbance frequencies. This highlights the need to understand how organisms' functional traits govern their relationships to the environment at different scales.more » « less
-
The species – area relationship (SAR) is a common pattern in which diversity increases with the area sampled, but ecosystems are three‐dimensional (3D) and diversity – volume relationships (DVRs) may exist in ecosystems that vary substantially in their vegetation volume. We tested whether forest vegetation volume, as a 3D extension of area in SARs, was a significant predictor of taxonomic (species) and structural (arrangement) diversity in five groups of organisms across the National Ecological Observatory Network (NEON). Vegetation volume and four structural arrangement metrics within the area of NEON plots were measured using NEON's discrete return lidar. Species richness was measured as the number of species within the respective NEON plot sampling area for understory plants, trees, breeding land birds, small mammals, and ground beetles. We found that volume negatively predicted understory plants and positively predicted tree and beetle species richness across the USA forest macrosystem, but not bird and small mammal species richness. Furthermore, volume was a significant predictor of several metrics that describe the internal and external heterogeneity of vegetation in forests (structural arrangement) within the ecosystem across the USA forest macrosystem. There were several significant within site‐level relationships, but not at all sites, between volume and species richness or structural arrangement in organism groups. Our study indicates that previous work that has focused on a 2D conceptualization of habitat can be expanded to 3D habitat space, but that the strength and the positive or negative direction of DVRs may vary taxonomically or geographically.more » « less
-
Abstract Accumulating evidence suggests that ecological communities undergoing change in response to either anthropogenic or natural disturbances exhibit macroecological patterns that differ from those observed in similar types of communities in relatively undisturbed sites. In contrast to such cross‐site comparisons, however, there are few empirical studies of shifts over time in the shapes of macroecological patterns. Here, we provide a dramatic example of a plant community in which the species–area relationship and the species‐abundance distribution change markedly over a period of six years. These patterns increasingly deviate from the predictions of the maximum entropy theory of ecology (METE), which successfully predicts macroecological patterns in relatively static systems. The error in the species–area relationship prediction additionally correlates over time with increased stress measured as mortality minus recruitment, providing a link between demography and the failure of macroecological theory. Information on the dynamic state of an ecosystem inferred from snapshot measurements of macroecological community structure can potentially assist in identifying causes and consequences of disturbance and extending the domain of current theories and models to disturbed ecosystems.more » « less
An official website of the United States government

