skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The recombination landscapes of spiny lizards (genus Sceloporus )
Abstract Despite playing a critical role in evolutionary processes and outcomes, relatively little is known about rates of recombination in the vast majority of species, including squamate reptiles—the second largest order of extant vertebrates, many species of which serve as important model organisms in evolutionary and ecological studies. This paucity of data has resulted in limited resolution on questions related to the causes and consequences of rate variation between species and populations, the determinants of within-genome rate variation, as well as the general tempo of recombination rate evolution on this branch of the tree of life. In order to address these questions, it is thus necessary to begin broadening our phylogenetic sampling. We here provide the first fine-scale recombination maps for two species of spiny lizards, Sceloporus jarrovii and Sceloporus megalepidurus, which diverged at least 12 Mya. As might be expected from similarities in karyotype, population-scaled recombination landscapes are largely conserved on the broad-scale. At the same time, considerable variation exists at the fine-scale, highlighting the importance of incorporating species-specific recombination maps in future population genomic studies.  more » « less
Award ID(s):
2045343
PAR ID:
10312511
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Ross-Ibarra, J
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rate of input of new genetic mutations, and the rate at which that variation is reshuffled, are key evolutionary processes shaping genomic diversity. Importantly, these rates vary not just across populations and species, but also across individual genomes. Despite previous studies having demonstrated that failing to account for rate heterogeneity across the genome can bias the inference of both selective and neutral population genetic processes, mutation and recombination rate maps have to date only been generated for a relatively small number of organisms. Here, we infer such fine-scale maps for the aye-aye (Daubentonia madagascariensis) – a highly endangered strepsirrhine that represents one of the earliest splits in the primate clade, and thus stands as an important outgroup to the more commonly-studied haplorrhines – utilizing a recently released fully-annotated genome combined with high-quality population sequencing data. We compare our indirectly inferred rates to previous pedigree-based estimates, finding further evidence of relatively low mutation and recombination rates in aye-ayes compared to other primates. 
    more » « less
  2. ABSTRACT The rate of input of new genetic mutations, and the rate at which that variation is reshuffled, are key evolutionary processes shaping genomic diversity. Importantly, these rates vary not just across populations and species but also across individual genomes. Despite previous studies having demonstrated that failing to account for rate heterogeneity across the genome can bias the inference of both selective and neutral population genetic processes, mutation and recombination rate maps have to date only been generated for a relatively small number of organisms. Here, we infer such fine‐scale maps for the aye‐aye (Daubentonia madagascariensis)—a highly endangered strepsirrhine that represents one of the earliest splits in the primate clade and thus stands as an important outgroup to the more commonly studied haplorrhines—utilizing a recently released fully annotated genome combined with high‐quality population sequencing data. We compare our indirectly inferred rates to previous pedigree‐based estimates, finding further evidence of relatively low mutation and recombination rates in aye‐ayes compared to other primates. 
    more » « less
  3. ABSTRACT Despite being a primate of considerable biomedical interest, particularly as a model for social behavior and neurobiology, the evolutionary processes shaping genetic variation in the coppery titi monkey (Plecturocebus cupreus) remain largely uncharacterized. Utilizing divergence and polymorphism data together with a recently published high-quality, annotated genome, we here infer the first fine-scale maps of mutation and recombination rates in this platyrrhine. We find a mean genome-wide mutation rate of between 0.93 × 10-8and 1.61 × 10-8per site per generation and a mean genome-wide recombination rate of 0.975 cM/Mb, in line with fine-scale rates estimated in other primates. In addition to providing novel biological insights into the mutation and recombination rates in this emerging model species for behavioral research, these fine-scale maps also improve our understanding of how the processes of mutation and recombination shape genetic variation in the coppery titi monkey genome, and their incorporation into evolutionary models will be a necessary aspect of future downstream inference of other evolutionary processes required to elucidate the genetic factors underlying the phenotypic traits studied in this species. 
    more » « less
  4. Falush, Daniel (Ed.)
    Abstract Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations. 
    more » « less
  5. ABSTRACT We here present high‐quality, population‐level sequencing data from the X chromosome of the highly‐endangered aye‐aye,Daubentonia madagascariensis. Using both polymorphism‐ and divergence‐based inference approaches, we quantify fine‐scale mutation and recombination rate maps, study the demographic and selective processes additionally shaping variation on the X chromosome, and compare these estimates to those recently inferred from the autosomes in this species. Results suggest that an equal sex ratio is most consistent with observed patterns of variation, and that no sex‐specific demographic patterns are needed to fit the empirical site frequency spectrum. Further, reduced rates of recombination were observed relative to the autosomes as would be expected, whereas mutation rates were inferred to be similar. Utilizing the estimated population history together with the mutation and recombination rate maps, we evaluated evidence for both recent and recurrent selective sweeps as well as balancing selection across the X chromosome, finding no significant evidence supporting the action of these episodic processes. Overall, these analyses provide new insights into the evolution of the X chromosome in this species, which represents one of the earliest splits in the primate clade. 
    more » « less