skip to main content


Title: Investigating Virus–Host Interactions in Cultured Primary Honey Bee Cells
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.  more » « less
Award ID(s):
1651561
NSF-PAR ID:
10312533
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Insects
Volume:
12
Issue:
7
ISSN:
2075-4450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Insects have evolved a wide range of strategies to combat invading pathogens, including viruses. Genes that encode proteins involved in immune responses often evolve under positive selection due to their co-evolution with pathogens. Insect antiviral defense includes the RNA interference (RNAi) mechanism, which is triggered by recognition of non-self, virally produced, double-stranded RNAs. Indeed, insect RNAi genes (e.g., dicer and argonaute-2 ) are under high selective pressure. Honey bees ( Apis mellifera ) are eusocial insects that respond to viral infections via both sequence specific RNAi and a non-sequence specific dsRNA triggered pathway, which is less well-characterized. A transcriptome-level study of virus-infected and/or dsRNA-treated honey bees revealed increased expression of a novel antiviral gene, GenBank: MF116383 , and in vivo experiments confirmed its antiviral function. Due to in silico annotation and sequence similarity, MF116383 was originally annotated as a probable cyclin-dependent serine/threonine-protein kinase . In this study, we confirmed that MF116383 limits virus infection, and carried out further bioinformatic and phylogenetic analyses to better characterize this important gene—which we renamed bee antiviral protein-1 ( bap1 ). Phylogenetic analysis revealed that bap1 is taxonomically restricted to Hymenoptera and Blatella germanica (the German cockroach) and that the majority of bap1 amino acids are evolving under neutral selection. This is in-line with the results from structural prediction tools that indicate Bap1 is a highly disordered protein, which likely has relaxed structural constraints. Assessment of honey bee gene expression using a weighted gene correlation network analysis revealed that bap1 expression was highly correlated with several immune genes—most notably argonaute-2 . The coexpression of bap1 and argonaute-2 was confirmed in an independent dataset that accounted for the effect of virus abundance. Together, these data demonstrate that bap1 is a taxonomically restricted, rapidly evolving antiviral immune gene. Future work will determine the role of bap1 in limiting replication of other viruses and examine the signal cascade responsible for regulating the expression of bap1 and other honey bee antiviral defense genes, including coexpressed ago-2 , and determine whether the virus limiting function of bap1 acts in parallel or in tandem with RNAi. 
    more » « less
  2. Honey bees (Apis mellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus–host interactions are involved in triggering antiviral stress response pathways. 
    more » « less
  3. With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus–host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology. 
    more » « less
  4. Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral genes expression. By systematically screening each of the six VHSV structural and nonstructural genes, we have identified matrix protein (M) as its most potent anti-host protein. VHSV-IVb M alone suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active SV40 promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters, and decreased RNAP II CTD Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I-III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M protein of a particular VHSV-Ia strain, F1, was significantly less potent than -IVb M at inhibiting SV40/luc expression, yet differed by just four amino acids. Mutation of D62 to alanine alone, or in combination with an E181 to alanine mutation (D62A/E181A), dramatically reduced the ability of -IVb M to suppress host transcription. Introducing either M D62A or D62A/E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced anti-transcriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression. Importance: Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish Novirhabdovirus, VHSV, as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates. 
    more » « less
  5. Baculoviruses are large dsDNA viruses that are virulent pathogens of certain insect species. In a natural host, Trichoplusia ni, infection by the model baculovirus Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) begins when the occluded form of the virus disassembles in the midgut and virions infect midgut epithelial cells to establish the primary phase of the infection. To better understand the primary phase of the AcMNPV infection cycle, newly molted 5 th instar T. ni larvae were orally infected with AcMNPV occlusion bodies and transcriptional responses of the T. ni midgut were analyzed at various times from 0-72 hours post infection, using RNA-Seq analysis and a T. ni reference genome. The numbers of differentially expressed host genes increased as the infection progressed, and we identified a total of 3,372 differentially expressed T. ni transcripts in the AcMNPV-infected midgut. Genes encoding orthologs of HMG176, atlastin, and CPH43 were among the most dramatically upregulated in response to AcMNPV infection. A number of cytochrome P450 genes were downregulated in response to infection. We also identified the effects of AcMNPV infection on a large variety of genes associated with innate immunity. This analysis provides an abundance of new and detailed information on host responses to baculovirus infection during the primary phase of the infection in the midgut, and will be important for understanding how baculoviruses establish productive infections in the organism. IMPORTANCE Baculoviruses are virulent pathogens of a number of important insect pest species. In the host Trichoplusia ni , infection begins in the midgut when infectious virions of the occulsion derived virus (ODV) phenotype enter and subsequently replicate in cells of the midgut epithelium. A second virion phenotype (budded virus or BV) is produced there and BV mediates systemic infection of the animal. Most prior detailed studies of baculovirus infections have focused on BV infections of cultured cells. In this study, we examined the transcriptional responses of the T. ni midgut to infection by ODV of the baculovirus AcMNPV, and identified a variety of host genes that respond dramatically to viral infection. Understanding transcriptional responses of the host midgut to viral infection is critically important for understanding the biphasic infection in the animal as a whole. 
    more » « less