skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Cross-technology Communication from LoRa to ZigBee in the 2.4 GHz Band
IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.  more » « less
Award ID(s):
2150010 2046538 1657275
PAR ID:
10312577
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Sensor Networks
Volume:
18
Issue:
2
ISSN:
1550-4859
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Low-power wireless mesh networks (LPWMNs) have been widely used in wireless monitoring and control applications. Although LPWMNs work satisfactorily most of the time thanks to decades of research, they are often complex, inelastic to change, and difficult to manage once the networks are deployed. Moreover, the deliveries of control commands, especially those carrying urgent information such as emergency alarms, suffer long delay, since the messages must go through the hop-by-hop transport. Recent studies show that adding low-power wide-area network radios such as LoRa onto the LPWMN devices (e.g., ZigBee) effectively overcomes the limitation. However, users have shown a marked reluctance to embrace the new heterogeneous communication approach because of the cost of hardware modification. In this article, we introduce LoRaBee, a novel LoRa to ZigBee cross-technology communication (CTC) approach, which leverages the energy emission in the Sub-1 GHz bands as the carrier to deliver information. Although LoRa and ZigBee adopt distinct modulation techniques, LoRaBee sends information from LoRa to ZigBee by putting specific bytes in the payload of legitimate LoRa packets. The bytes are selected such that the corresponding LoRa chirps can be recognized by the ZigBee devices through sampling the received signal strength. Experimental results show that our LoRaBee provides reliable CTC communication from LoRa to ZigBee with the throughput of up to 281.61 bps in the Sub-1 GHz bands. 
    more » « less
  2. IEEE 802.15.4-based industrial wireless sensor-actuator networks (WSANs) have been widely deployed to connect sensors, actuators, and controllers in industrial facilities. Configuring an industrial WSAN to meet the application-specified quality of service (QoS) requirements is a complex process, which involves theoretical computation, simulation, and field testing, among other tasks. Since industrial wireless networks become increasingly hierarchical, heterogeneous, and complex, many research efforts have been made to apply wireless simulations and advanced machine learning techniques for network configuration. Unfortunately, our study shows that the network configuration model generated by the state-of-the-art method decays quickly over time. To address this issue, we develop aMEta-learning basedRuntimeAdaptation (MERA) method that efficiently adapts network configuration models for industrial WSANs at runtime. Under MERA, the parameters of the network configuration model are explicitly trained such that a small number of optimization steps with only a few new measurements will produce good generalization performance after the network condition changes. We also develop a data sampling method to reduce the measurements required by MERA at runtime without sacrificing its performance. Experimental results show that MERA achieves higher prediction accuracy with less physical measurements, less computation time, and longer adaptation intervals compared to a state-of-the-art baseline. 
    more » « less
  3. Most sensor networks on a naval vessel are wired directly to the control unit, and this includes the Power System. This paper demonstrates how an IEEE 802.15.4 based Wireless Sensor Network (WSN) could be used to have an easy to deploy, flexible and affordable Smart Grid Power System monitoring structure. In published literature, it has been qualitatively proven that a WSN can work on a ship, despite its more complex Radio Frequency (RF) environment. This work quantifies this, showing the achievable levels of Packet Error Rate under different levels of Signal to Interference and Noise Ratio, proving that it could be used instead of a wired channel. Another important aspect studied was the cybersecurity implications of using a wireless network versus a wired one. The effects of delayed, missing and faked power measurements were also done, along with a discussion of what could be done to detect and mitigate these effects. 
    more » « less
  4. Most sensor networks on a naval vessel are wired directly to the control unit , and this includes the Power System. This paper demonstrates how an IEEE 802.15.4 based Wireless Sensor Network (WSN) could be used to have an easy to deploy, flexible and affordable Smart Grid Power System monitoring structure. In published literature, it has been qualitatively proven that a WSN can work on a ship, despite its more complex Radio Frequency (RF) environment. This work quantifies this, showing the achievable levels of Packet Error Rate under different levels of Signal to Interference and Noise Ratio, proving that it could be used instead of a wired channel. Another important aspect studied was the cybersecurity implications of using a wireless network versus a wired one. The effects of delayed, missing and faked power measurements were also done, along with a discussion of what could be done to detect and mitigate these effects. 
    more » « less
  5. Most sensor networks on a naval vessel are wired directly to the control unit,[1, 16] and this includes the Power System. This paper demonstrates how an IEEE 802.15.4 based Wireless Sensor Network (WSN) could be used to have an easy to deploy, flexible and affordable Smart Grid Power System monitoring structure. In published literature, it has been qualitatively proven that a WSN can work on a ship, despite its more complex Radio Frequency (RF) environment. This work quantifies this, showing the achievable levels of Packet Error Rate under different levels of Signal to Interference and Noise Ratio, proving that it could be used instead of a wired channel. Another important aspect studied was the cybersecurity implications of using a wireless network versus a wired one. The effects of delayed, missing and faked power measurements were also studied, along with a discussion of what could be done to detect and mitigate them. 
    more » « less