skip to main content


Title: Enabling Cross-technology Communication from LoRa to ZigBee in the 2.4 GHz Band
IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.  more » « less
Award ID(s):
2150010 2046538 1657275
NSF-PAR ID:
10312577
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Sensor Networks
Volume:
18
Issue:
2
ISSN:
1550-4859
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Low-power wireless mesh networks (LPWMNs) have been widely used in wireless monitoring and control applications. Although LPWMNs work satisfactorily most of the time thanks to decades of research, they are often complex, inelastic to change, and difficult to manage once the networks are deployed. Moreover, the deliveries of control commands, especially those carrying urgent information such as emergency alarms, suffer long delay, since the messages must go through the hop-by-hop transport. Recent studies show that adding low-power wide-area network radios such as LoRa onto the LPWMN devices (e.g., ZigBee) effectively overcomes the limitation. However, users have shown a marked reluctance to embrace the new heterogeneous communication approach because of the cost of hardware modification. In this article, we introduce LoRaBee, a novel LoRa to ZigBee cross-technology communication (CTC) approach, which leverages the energy emission in the Sub-1 GHz bands as the carrier to deliver information. Although LoRa and ZigBee adopt distinct modulation techniques, LoRaBee sends information from LoRa to ZigBee by putting specific bytes in the payload of legitimate LoRa packets. The bytes are selected such that the corresponding LoRa chirps can be recognized by the ZigBee devices through sampling the received signal strength. Experimental results show that our LoRaBee provides reliable CTC communication from LoRa to ZigBee with the throughput of up to 281.61 bps in the Sub-1 GHz bands. 
    more » « less
  2. Most sensor networks on a naval vessel are wired directly to the control unit,[1, 16] and this includes the Power System. This paper demonstrates how an IEEE 802.15.4 based Wireless Sensor Network (WSN) could be used to have an easy to deploy, flexible and affordable Smart Grid Power System monitoring structure. In published literature, it has been qualitatively proven that a WSN can work on a ship, despite its more complex Radio Frequency (RF) environment. This work quantifies this, showing the achievable levels of Packet Error Rate under different levels of Signal to Interference and Noise Ratio, proving that it could be used instead of a wired channel. Another important aspect studied was the cybersecurity implications of using a wireless network versus a wired one. The effects of delayed, missing and faked power measurements were also studied, along with a discussion of what could be done to detect and mitigate them. 
    more » « less
  3. Most sensor networks on a naval vessel are wired directly to the control unit, and this includes the Power System. This paper demonstrates how an IEEE 802.15.4 based Wireless Sensor Network (WSN) could be used to have an easy to deploy, flexible and affordable Smart Grid Power System monitoring structure. In published literature, it has been qualitatively proven that a WSN can work on a ship, despite its more complex Radio Frequency (RF) environment. This work quantifies this, showing the achievable levels of Packet Error Rate under different levels of Signal to Interference and Noise Ratio, proving that it could be used instead of a wired channel. Another important aspect studied was the cybersecurity implications of using a wireless network versus a wired one. The effects of delayed, missing and faked power measurements were also done, along with a discussion of what could be done to detect and mitigate these effects. 
    more » « less
  4. Most sensor networks on a naval vessel are wired directly to the control unit , and this includes the Power System. This paper demonstrates how an IEEE 802.15.4 based Wireless Sensor Network (WSN) could be used to have an easy to deploy, flexible and affordable Smart Grid Power System monitoring structure. In published literature, it has been qualitatively proven that a WSN can work on a ship, despite its more complex Radio Frequency (RF) environment. This work quantifies this, showing the achievable levels of Packet Error Rate under different levels of Signal to Interference and Noise Ratio, proving that it could be used instead of a wired channel. Another important aspect studied was the cybersecurity implications of using a wireless network versus a wired one. The effects of delayed, missing and faked power measurements were also done, along with a discussion of what could be done to detect and mitigate these effects. 
    more » « less
  5. Wireless communication over long distances has become the bottleneck for battery-powered, large-scale deployments. Low-power protocols like Zigbee and Bluetooth Low Energy have limited communication range, whereas long-range communication strategies like cellular and satellite networks are power-hungry. Technologies that use narrow-band communication like LoRa, SigFox, and NB-IoT have low spectral efficiency, leading to scalability issues. The goal of this work is to develop a communication framework that is energy efficient, long-range, and scalable. We propose, design, and prototype WiChronos, a communication paradigm that encodes information in the time interval between two narrowband symbols to drastically reduce the energy consumption in a wide area network with large number of senders. We leverage the low data-rate and relaxed latency requirements of such applications to achieve the desired features identified above. We design and implement chirp spread spectrum transmitter and receiver using off-the-shelf components to send the narrowband symbols. Based on our prototype, WiChronos achieves an impressive 60% improvement in battery life compared to state-of-the-art LPWAN technologies in transmission of payloads less than 10 bytes at experimentally verified distances of over 4 km. We also show that more than 1,000 WiChronos senders can co-exist with less than 5% collision probability under low traffic conditions. 
    more » « less