skip to main content


Title: Variability and Controls on δ 18 O, d‐excess, and ∆′ 17 O in Southern Peruvian Precipitation
Abstract

The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.

 
more » « less
Award ID(s):
1954660
NSF-PAR ID:
10445801
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less
  2. Abstract

    Hydrogen (δD) and oxygen (δ18O) isotopic ratios are strongly correlated in precipitation over time and space, defining the meteoric water line, and the slope of this δD‐δ18O relationship reflects covariations of deuterium excess (d‐excess) with δD or δ18O. This δD‐δ18O line provides a tool for inferring hydrologic processes from the evaporation source to condensation site. Here, we present δD‐δ18O relationships on seasonal and annual timescales for daily precipitation, snow pits, and a 15‐m ice core (Owen) at Summit, Greenland. Seasonally, precipitation δD‐δ18O slopes are less than 8 (summer = 7.70; winter = 7.77), while the annual slope is greater than 8 (8.27). We suggest that intra‐season slopes result primarily from Rayleigh distillation, which, under prevailing conditions, produces slopes less than 8. The summer line has a greater intercept (higher d‐excess) than the winter line. This separation causes annual slopes to be greater than seasonal ones. We attribute high summer d‐excess primarily to contributions of vapor sublimated from the Greenland Ice Sheet and other terrestrial sources. High sublimated moisture proportions result in a large separation between seasonal δD‐δ18O lines, and thus high annual slopes. Inter‐seasonal weighting of precipitation amount also influences annual slopes because slopes are weighed by the number of storms each season. Using snow pit measurements, we demonstrate that precipitation isotopic signals translate to the snowpack. We generate indices to determine Sublimation Proportion Index and Precipitation Weighting Index, and find that annual Owen core δD‐δ18O line slopes are significantly related to these indices, demonstrating that these factors are recorded in ice cores.

     
    more » « less
  3. Abstract

    The Arctic hydrological cycle is predicted to intensify as the Arctic warms, due to increased poleward moisture transport during summer and increased evaporation from seas once ice‐covered during winter. Records of past Arctic precipitation seasonality are important because they provide a context for these ongoing changes. In some Arctic lakes, stable isotopes of oxygen and hydrogen (δ18O and δ2H, respectively) vary seasonally, due to seasonal changes in precipitation δ18O and δ2H. We reconstruct precipitation seasonality from Lake N3, a well‐dated lake sediment archive in Disko Bugt, western Greenland, by generating Holocene records of two proxies that are produced at different times of the year, and therefore record different lake water seasonal isotopic compositions. Aquatic plants synthesize waxes throughout the summer, and their δ2H reflects winter‐biased precipitation δ2H at Lake N3, whereas chironomids synthesize their head capsules between late summer and winter, and their δ18O reflects summer‐biased precipitation δ18O at Lake N3. During the middle Holocene at Lake N3, aquatic plant leaf wax was strongly2H‐depleted, while chironomid chitin was18O‐enriched. We guide interpretations of these records using sensitivity tests of a lake water and energy balance model, where we change precipitation amount and isotope seasonality inputs. The sensitivity tests suggest that the contrasting trends between proxies were likely caused by an increase in precipitation amount during all seasons and an increase in precipitation isotope seasonality, in addition to proxy‐specific mechanisms, highlighting the importance of understanding lake‐ and proxy‐specific systematics when interpreting records from sediment archives.

     
    more » « less
  4. Abstract

    In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.

     
    more » « less
  5. The tropical Andes of southern Peru and northern Bolivia have several major mountain summits suitable for ice core paleoclimatic investigations. However, incomplete understanding of the controls on the isotopic ( δD, δ18O) composition of precipitation and a paucity of field observations in this region continue to limit ice-core-based paleoclimate reconstructions. This study examines four years of daily observations of δD and δ18O in precipitation from a citizen scientist network on the northeastern margin of the Altiplano, to identify controls on the subseasonal spatiotemporal variability in δ18O during the wet season (November–April). These data provide new insights into modern δ18O variability at high spatial and temporal scales. We identify a regionally coherent subseasonal signal in precipitation δ18O featuring alternating periods of high and low δ18O of 9–27-day duration. This signal reflects variability in precipitation delivery driven by synoptic conditions and closely relates to variations in the strength of the South American low-level jet and moisture availability over the study area. The annual layer of snowpack on the Quelccaya Ice Cap observed in the subsequent dry season retains this subseasonal signal, allowing the development of a snow-pit age model based on precipitation δ18O measurements, and demonstrating how synoptic variability is transmitted from the atmosphere to mountaintop snowpacks along the Altiplano’s eastern margin. This result improves our understanding of the hydrometeorological processes governing δ18O and δD in tropical Andean precipitation and has implications for improving paleoclimate reconstructions from tropical Andean ice cores and other paleoclimate records.

     
    more » « less