Fluorine is the 13th-most abundant element on earth, found most often bound to other elements in its negatively charged form, fluoride. Fluoride compounds are used to improve dental health, to make steel, and to make useful materials like Teflon. Fluoride is also emitted into the environment as a byproduct of both natural and industrial processes. Fluoride even contaminates the fertilizer used to help plants grow. In high amounts, fluoride can be toxic. Single-celled organisms like bacteria protect themselves by making a transporter that specifically removes fluoride from the cell. Yeast have a similar transporter called FEX (fluoride exporter). Bacteria and yeast without these transporters die in the presence of the small amount of fluoride found in tap water. Plants are more complicated, but they also use FEX to keep fluoride from building up inside themselves. Plants without FEX can not make new seeds when grown in normal soil.
more »
« less
The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants1
Abstract Fluoride is everywhere in the environment, yet it is toxic to living things. How biological organisms detoxify fluoride has been unknown until recently. Fluoride-specific ion transporters in both prokaryotes (Fluoride channel; Fluc) and fungi (Fluoride Exporter; FEX) efficiently export fluoride to the extracellular environment. FEX homologs have been identified throughout the plant kingdom. Understanding the function of FEX in a multicellular organism will reveal valuable knowledge about reducing toxic effects caused by fluoride. Here, we demonstrate the conserved role of plant FEX (FLUORIDE EXPORTER) in conferring fluoride tolerance. Plant FEX facilitates the efflux of toxic fluoride ions from yeast cells and is required for fluoride tolerance in plants. A CRISPR/Cas9-generated mutation in Arabidopsis thaliana FEX renders the plant vulnerable to low concentrations (100-µM) of fluoride at every stage of development. Pollen is particularly affected, failing to develop even at extremely low levels of fluoride in the growth medium. The action of the FEX membrane transport protein is the major fluoride defense mechanism in plants.
more »
« less
- Award ID(s):
- 1953903
- PAR ID:
- 10312929
- Date Published:
- Journal Name:
- Plant Physiology
- Volume:
- 186
- Issue:
- 2
- ISSN:
- 0032-0889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Understanding the impact of microbial interactions on plants is critical for maintaining healthy native ecosystems and sustainable agricultural practices. Despite the reality that genetically distinct plants host multiple microbes of large effect in the field, it remains unclear the extent to which host genotypes modulate non‐additive microbial interactions and how these interactions differ between benign/pathogenic environments. Our study fills this gap by performing a large‐scale manipulative microbiome experiment across seven genotypes of the model legumeMedicago truncatula. We combine plant performance metrics, survival analyses, predictive modelling, RNA extractions and targeted gene expression to assess how host genotype and microbes non‐additively interact to shape plant growth and disease ecology. Our results reveal three important findings: (1) host genotypes with high tolerance to pathogens benefit more from multiple mutualist interactions than susceptible genotypes, (2) only high‐tolerance genotypes retain the same beneficial host performance outcomes from the benign environment within the pathogenic environment and (3) the quality of the symbiotic relationship with mutualists is a strong predictor of host survival against pathogenic disease. By applying these findings towards developing crops that promote synergistic microbial interactions, yields and pathogen defence could be simultaneously increased while reducing the need for toxic fertilisers and pesticides.more » « less
-
Magnesium (Mg2+) is an essential nutrient in all organisms. However, high levels of Mg2+ in the environment are toxic to plants. In this study, we identified the vacuolar-type H+-pyrophosphatase, AVP1, as a critical enzyme for optimal plant growth under high-Mg conditions. The Arabidopsis avp1 mutants displayed severe growth retardation, as compared to the wild-type plants upon excessive Mg2+. Unexpectedly, the avp1 mutant plants retained similar Mg content to wild-type plants under either normal or high Mg conditions, suggesting that AVP1 may not directly contribute to Mg2+ homeostasis in plant cells. Further analyses confirmed that the avp1 mutant plants contained a higher pyrophosphate (PPi) content than wild type, coupled with impaired vacuolar H+-pyrophosphatase activity. Interestingly, expression of the Saccharomyces cerevisiae cytosolic inorganic pyrophosphatase1 gene IPP1, which facilitates PPi hydrolysis but not proton translocation into vacuole, rescued the growth defects of avp1 mutants under high-Mg conditions. These results provide evidence that high-Mg sensitivity in avp1 mutants possibly resulted from elevated level of cytosolic PPi. Moreover, genetic analysis indicated that mutation of AVP1 was additive to the defects in mgt6 and cbl2 cbl3 mutants that are previously known to be impaired in Mg2+ homeostasis. Taken together, our results suggest AVP1 is required for cellular PPi homeostasis that in turn contributes to high-Mg tolerance in plant cells.more » « less
-
Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.more » « less
-
Abstract Understanding the often antagonistic plant–herbivore interactions and how host defenses can influence herbivore dietary breadth is an area of ongoing study in ecology and evolutionary biology. Typically, host plants/fungi that produce highly noxious chemical defenses are only fed on by specialists. We know very little about generalist species that can feed and develop on a noxious host. One such example of generalists feeding on toxic host occurs in the mushroom‐feedingDrosophilafound in theimmigrans‐tripunctataradiation. Although these species are classified as generalists, their acceptable hosts include deadlyAmanitaspecies. In this study, we used behavioral assays to assess associations between one mushroom‐feeding species,Drosophila guttifera, and the deadlyAmanita phalloides. We conducted feeding assays to confirm the presence of cyclopeptide toxin tolerance. We then completed host preference assays in female flies and larvae and did not find a preference for toxic mushrooms in either. Finally, we assessed the effect of competition on oviposition preference. We found that the presence of a competitor's eggs on the preferred host was associated with the flies increasing the number of eggs laid on the toxic mushrooms. Our results highlight how access to a low competition host resource may help to maintain associations between a generalist species and a highly toxic host.more » « less
An official website of the United States government

