skip to main content


Title: Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow Using the Lattice Boltzmann Method
The lattice Boltzmann method is employed to conduct direct numerical simulations of turbulent open channel flows with the presence of finite-size spherical sediment particles. The uniform particles have a diameter of approximately 18 wall units and a density of ρp=2.65ρf, where ρp and ρf are the particle and fluid densities, respectively. Three low particle volume fractions ϕ=0.11%, 0.22%, and 0.44% are used to investigate the particle-turbulence interactions. Simulation results indicate that particles are found to result in a more isotropic distribution of fluid turbulent kinetic energy (TKE) among different velocity components, and a more homogeneous distribution of the fluid TKE in the wall-normal direction. Particles tend to accumulate in the near-wall region due to the settling effect and they preferentially reside in low-speed streaks. The vertical particle volume fraction profiles are self-similar when normalized by the total particle volume fractions. Moreover, several typical transport modes of the sediment particles, such as resuspension, saltation, and rolling, are captured by tracking the trajectories of particles. Finally, the vertical profiles of particle concentration are shown to be consistent with a kinetic model.  more » « less
Award ID(s):
1706130
NSF-PAR ID:
10312936
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fluids
Volume:
6
Issue:
6
ISSN:
2311-5521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow. 
    more » « less
  2. Current understanding of turbulence modulation by solid particles is incomplete as making reliable predictions on the nature and level of modulation remains a challenging task. Multiple modulation mechanisms may be simultaneously induced by particles, but the lack of reliable methods to identify these mechanisms and quantify their effects hinders a complete understanding of turbulence modulation. In this work, we present a full analysis of the turbulent kinetic energy (TKE) equation for a turbulent channel flow laden with a few fixed particles near the channel walls, in order to investigate how the wall generated turbulence interacts with the particles and how, as a result, the global turbulence statistics are modified. All terms in the budget equations of total and component-wise TKEs are explicitly computed using the data from direct numerical simulations. Particles are found to modify turbulence by two competing mechanisms: the reduction of the intrinsic turbulence production associated with a reduced mean shear due to the resistance imposed by solid particles (the first mechanism), and an additional TKE production mechanism by displacing incoming fluid (the second mechanism). The distribution of TKE in the wall-normal direction is also made more homogeneous due to the significantly enhanced pressure transport of TKE. Finally, the budget analysis of component-wise TKE reveals an enhanced inter-component TKE transfer due to the presence of particles, which leads to a more isotropic distribution of TKE among three velocity components. 
    more » « less
  3. This study presents direct numerical simulations of turbulent Rayleigh–Bénard convection in non-colloidal suspensions, with special focus on the heat transfer modifications in the flow. Adopting a Rayleigh number of $10^8$ and Prandtl number of 7, parametric investigations of the particle volume fraction $0\leq \varPhi \leq 40\,\%$ and particle diameter $1/20\leq d^*_p\leq 1/10$ with respect to the cavity height, are carried out. The particles are neutrally buoyant, rigid spheres with physical properties that match the fluid phase. Up to $\varPhi =25\,\%$ , the Nusselt number increases weakly but steadily, mainly due to the increased thermal agitation that overcomes the decreased kinetic energy of the flow. Beyond $\varPhi =30\,\%$ , the Nusselt number exhibits a substantial drop, down to approximately 1/3 of the single-phase value. This decrease is attributed to the dense particle layering in the near-wall region, confirmed by the time-averaged local volume fraction. The dense particle layer reduces the convection in the near-wall region and negates the formation of any coherent structures within one particle diameter from the wall. Significant differences between $\varPhi \leq 30\,\%$ and 40 % are observed in all statistical quantities, including heat transfer and turbulent kinetic energy budgets, and two-point correlations. Special attention is also given to the role of particle rotation, which is shown to contribute to maintaining high heat transfer rates in moderate volume fractions. Furthermore, decreasing the particle size promotes the particle layering next to the wall, inducing a similar heat transfer reduction as in the highest particle volume fraction case. 
    more » « less
  4. Abstract

    The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal‐mean radius of maximum wind speed at 1‐km height. As in a previous study, the axisymmetric TKE decreases with height in the eyewall, but more abruptly in simulations without TKE advection. The largest TKE budget terms are shear generation and dissipation, though variability in vertical turbulent transport and buoyancy production affect the change in the azimuthal‐mean TKE distribution. The general relationships between the TKE budget terms are consistent across different radii, regardless of storm intensity. In terms of the asymmetric distribution in the eyewall, TKE is maximized in the front‐left quadrant where the sea surface temperature (SST) is highest and is minimized in the rear‐right quadrant where the SST is the lowest. In the category‐5 simulation, the height of the TKE maximum varies significantly in the eyewall between quadrants and is between ∼400 m in the rear‐right quadrant and ∼1,000 m in the front‐left quadrant. When TKE advection is included in the simulations, the maximum eyewall TKE values are downwind compared to the simulations without TKE advection.

     
    more » « less
  5. We conducted a spectral analysis of the turbulence kinetic energy (TKE) budget in a bubble plume using particle image velocimetry with fluorescent particles. Our findings confirmed the hypothesis of an inverse energy cascade in the bubble plume, where TKE is transferred from small to large eddies. This is attributed to direct injection of TKE by bubble passages across a wide range of scales, in contrast to canonical shear production of TKE in large scales. Turbulence dissipation was identified as the primary sink of the bubble-produced TKE and occurred at all scales. The decomposition of velocities using the critical length scale of inter-scale energy transfer allowed us to distinguish between large- and small-scale motions in the bubble plume. The large-scale turbulent fluctuations exhibited a skewed distribution and were likely associated with the return flow after bubble passage and the velocities induced by the bubble wake. The small-scale turbulent fluctuations followed a Gaussian distribution relatively well. The large-scale motions contributed to over half of the Reynolds stresses, while there were significant small-scale contributions to the normal stresses near the plume center but not to the shear stress. The large-scale motions in the vorticity field induced a street of vertically elongated vortex pairs, while the small-scale vortices exhibited similar sizes in both horizontal and vertical directions.

     
    more » « less