Abstract
This dataset incorporates Mexico City related essential data files associated with Beth Tellman's dissertation: Mapping and Modeling Illicit and Clandestine Drivers of Land Use Change: Urban Expansion in Mexico- Publisher:
- Environmental Data Initiative
- Publication Year:
- NSF-PAR ID:
- 10312963
- Award ID(s):
- 1657773
- Sponsoring Org:
- National Science Foundation
More Like this
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
Informal urban land expansion is produced through a diversity of social and political transactions, yet ‘pixelizable’ data capturing these transactions is commonly unavailable. Understanding informal urbanization entails differentiating spatial patterns of informal settlement from formal growth, associating such patterns with the social transactions that produce them, and evaluating the social and environmental outcomes of distinct settlement types. Demonstrating causality between distinct urban spatial patterns and social-institutional processes requires both highresolution spatial temporal time-series data of urban change and insights into social transactions giving rise to these patterns. We demonstrate an example of linking distinct spatial patterns of informal urban expansion to the institutional processes each engenders in Mexico City. The approach presented here can be applied across cases, potentially improving land projection models in the rapidly urbanizing Global South, characterized by high informality. We conclude with a research agenda to identify, project, and evaluate informal urban expansion patterns.
-
Urban development is occurring in many Sub-Saharan Africa cities and rapid urbanization is underway in the East African city of Addis Ababa, Ethiopia. In an effort to address urban poverty and increase homeownership opportunities for low and middle-income residents, the City Administration of Addis Ababa initiated a large-scale housing development project in 2005. The project has resulted in the completion of 175,000 units within the city with 132,000 more under construction. To understand the impacts of both rapid growth and the housing program’s impact on the city’s urban form, we compared the type and distribution of land uses in Addis Ababa, Ethiopia, between 2006 with 2016 using hand-digitized, ortho-rectified satellite images in Geographic Information Systems (GISs). While residential density has increased, overall density has decreased from 109 people/ha to 98 people/ha. We found that between 2006 and 2016, land occupied by residential housing increased from 33% to 39% and the proportion of informal housing decreased from 57% to 38%. Reflecting the country’s economic prosperity, there was a dramatic increase in the presence of single family housing, particularly on the city’s western side. In 2006, only 1% of residential areas were occupied by high-rise condominiums (4 floors or greater) and thismore »
-
Abstract Population concentration and built‐up land expansion are two prominent features of contemporary urbanization. Existing literature on the population aspect of urbanization has mostly focused on national and regional aggregates, and literature on the land development aspect has often relied on spatial case studies of individual cities or their meta‐analyses. Using newly‐available data, here we conduct the first global‐coverage, spatial analysis of the relationship between (changes in) population and built‐up land at multiple spatial scales, and compare to existing common beliefs about urbanization based on individual city studies. We find that population and built‐up land show distinctly different spatial and temporal patterns (with a global correlation coefficient around 0.6). Contrary to common impressions, our results show that during recent decades, developed and developing regions across the world experienced comparable amounts of built‐up land expansion. While meta‐analyses have reported that built‐up land in urban areas expands globally on average twice as fast as population grows, our results show the global change rates of built‐up land and population are similar. Also, most global population, including what national statistics agencies call urban population, reside in areas with low land development levels (which are frequently less than 5% built up). These changes in perspectivemore »
-
Abstract
<p>PLEASE CONTACT AUTHORS IF YOU CONTRIBUTE AND WOULD LIKE TO BE LISTED AS A CO-AUTHOR. (this message will be removed some time weeks/months after the first publication)</p> <p>Terrestrial Parasite Tracker indexed biotic interactions and review summary.</p> <p>The Terrestrial Parasite Tracker (TPT) project began in 2019 and is funded by the National Science foundation to mobilize data from vector and ectoparasite collections to data aggregators (e.g., iDigBio, GBIF) to help build a comprehensive picture of arthropod host-association evolution, distributions, and the ecological interactions of disease vectors which will assist scientists, educators, land managers, and policy makers. Arthropod parasites often are important to human and wildlife health and safety as vectors of pathogens, and it is critical to digitize these specimens so that they, and their biotic interaction data, will be available to help understand and predict the spread of human and wildlife disease.</p> <p>This data publication contains versioned TPT associated datasets and related data products that were tracked, reviewed and indexed by Global Biotic Interactions (GloBI) and associated tools. GloBI provides open access to finding species interaction data (e.g., predator-prey, pollinator-plant, pathogen-host, parasite-host) by combining existing open datasets using open source software.</p> <p>If you have questions or comments about this