skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum
Abstract The vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell-type specific neuroproteomes is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteomes in the mouse brain, confirmed by imaging, electron microscopy, and mass spectrometry. We virally express subcellular-localized APEX2 to map the proteome of direct and indirect pathway spiny projection neurons in the striatum. The workflow provides sufficient depth to uncover changes in the proteome of striatal neurons following chemogenetic activation of Gα q -coupled signaling cascades. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome snapshots in the mouse brain.  more » « less
Award ID(s):
1846234
PAR ID:
10312976
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mammalian axonal development begins in embryonic stages and continues postnatally. After birth, axonal proteomic landscape changes rapidly, coordinated by transcription, protein turnover, and post-translational modifications. Comprehensive profiling of axonal proteomes across neurodevelopment is limited, with most studies lacking cell-type and neural circuit specificity, resulting in substantial information loss. We create a Cre-dependent APEX2 reporter mouse line and map cell-type-specific proteome of corticostriatal projections across postnatal development. We synthesize analysis frameworks to define temporal patterns of axonal proteome and phosphoproteome, identifying co-regulated proteins and phosphorylations associated with genetic risk for human brain disorders. We discover proline-directed kinases as major developmental regulators. APEX2 transgenic reporter proximity labeling offers flexible strategies for subcellular proteomics with cell type specificity in early neurodevelopment, a critical period for neuropsychiatric disease. 
    more » « less
  2. Abstract Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states. 
    more » « less
  3. Abstract Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer’s Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis. 
    more » « less
  4. Abstract Typical multiomics studies employ separate methods for DNA, RNA, and protein sample preparation, which is labor intensive, costly, and prone to sampling bias. We describe a method for preparing high-quality, sequencing-ready DNA and RNA, and either intact proteins or mass-spectrometry-ready peptides for whole proteome analysis from a single sample. This method utilizes a reversible protein tagging scheme to covalently link all proteins in a lysate to a bead-based matrix and nucleic acid precipitation and selective solubilization to yield separate pools of protein and nucleic acids. We demonstrate the utility of this method to compare the genomes, transcriptomes, and proteomes of four triple-negative breast cancer cell lines with different degrees of malignancy. These data show the involvement of both RNA and associated proteins, and protein-only dependent pathways that distinguish these cell lines. We also demonstrate the utility of this multiomics workflow for tissue analysis using mouse brain, liver, and lung tissue. 
    more » « less
  5. Organismal physiology, morphology, and behavior are based on the function of structural proteins and enzymes. Proteins represent the central regulatory plane in the genome to phenome continuum. The protein complement of cells and tissues (the proteome) is highly dynamic and mirrors environmental and developmental influences on organismal phenotypes. Therefore, dynamic proteomes are excellent bioindicators of environmental exposure. Comprehensive blueprints of environmental exposures are reflected in specific proteome states and capturing those states is achieved by quantitative proteomics. We have developed quantitative proteomics workflows to characterize environmental influences on proteome states and proteome dynamics of euryhaline and euryhthermal fish populations in coastal areas. These workflows utilize tissue- and cell-specific assay libraries for data-independent acquisition (DIA) or Sequentially Windowed Acquisition of all THeoretically possible MSMS spectra (SWATH) mass spectrometry. Qunatitative proteome datasets generated with these workflows are highly accurate and they consistently cover precisely defined sets of proteomes. This consistent coverage renders systematic and long-term network and topological data analysis (TDA) approaches feasible. These workflows and approaches are explained and their application to coastal fish biology is discussed using selected datasets as examples. The data presented illustrate that habitat differences such as salinity and temperature changes are readily captured in state changes of tissue-specific proteomes. The overall topology of proteome states is indicative of particular tissues, species, and environmental contexts and is therefore suitable for deducing functional and phenotypic consequences of environmental changes on coastal organisms. 
    more » « less