skip to main content


Title: Stabilising role of seed banks and the maintenance of bacterial diversity
Abstract

Coexisting species often exhibit negative frequency dependence due to mechanisms that promote population growth and persistence when rare. These stabilising mechanisms can maintain diversity through interspecific niche differences, but also through life‐history strategies like dormancy that buffer populations in fluctuating environments. However, there are few tests demonstrating how seed banks contribute to long‐term community dynamics and the maintenance of diversity. Using a multi‐year, high‐frequency time series of bacterial community data from a north temperate lake, we documented patterns consistent with stabilising coexistence. Bacterial taxa exhibited differential responses to seasonal environmental conditions, while seed bank dynamics helped maintain diversity over less‐favourable winter periods. Strong negative frequency dependence in rare, but metabolically active, taxa suggested a role for biotic interactions in promoting coexistence. Together, our results provide field‐based evidence that niche differences and seed banks contribute to recurring community dynamics and the long‐term maintenance of diversity in nature.

 
more » « less
Award ID(s):
1934554
NSF-PAR ID:
10374414
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
11
ISSN:
1461-023X
Page Range / eLocation ID:
p. 2328-2338
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Microalgal cultures are often maintained in xenic conditions, i.e., with associated bacteria, and many studies indicate that these communities both are complex and have significant impacts on the physiology of the target photoautotroph. Here, we investigated the structure and stability of microbiomes associated with a diverse sampling of diatoms during long-term maintenance in serial batch culture. We found that, counter to our initial expectation, evenness diversity increased with time since cultivation, driven by a decrease in dominance by the most abundant taxa in each culture. We also found that the site from which and time at which a culture was initially collected had a stronger impact on microbiome structure than the diatom species; however, some bacterial taxa were commonly present in most cultures despite having widely geographically separated collection sites. Our results support the conclusion that stochastic initial conditions (i.e., the local microbial community at the collection site) are important for the long-term structure of these microbiomes, but deterministic forces such as negative frequency dependence and natural selection exerted by the diatom are also at work. IMPORTANCE Natural microbial communities are extremely complex, with many more species coexisting in the same place than there are different resources to support them. Understanding the forces that allow this high level of diversity has been a central focus of ecological and evolutionary theory for many decades. Here, we used stock cultures of diatoms, which were maintained for years in continuous growth alongside populations of bacteria, as proxies for natural communities. We show that the bacterial communities remained relatively stable for years, and there is evidence that ecological forces worked to stabilize coexistence instead of favoring competition and exclusion. We also show evidence that, despite some important regional differences in bacterial communities, there was a globally present core microbiome potentially selected for in these diatom cultures. Understanding interactions between bacteria and diatoms is important both for basic ecological science and for practical science, such as industrial biofuel production. 
    more » « less
  2. Abstract

    Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long‐term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole‐community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind‐dispersed species exhibited significant synchrony at ~6‐month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale‐specificity and time‐localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.

     
    more » « less
  3. Abstract

    From genes to communities, understanding how diversity is maintained remains a fundamental question in biology. One challenging to identify, yet potentially ubiquitous, mechanism for the maintenance of diversity is negative frequency dependent selection (NFDS), which occurs when entities (e.g., genotypes, life history strategies, species) experience a per capita reduction in fitness with increases in relative abundance. Because NFDS allows rare entities to increase in frequency while preventing abundant entities from excluding others, we posit that negative frequency dependent selection plays a central role in the maintenance of diversity. In this review, we relate NFDS to coexistence, identify mechanisms of NFDS (e.g., mutualism, predation, parasitism), review strategies for identifying NFDS, and distinguish NFDS from other mechanisms of coexistence (e.g., storage effects, fluctuating selection). We also emphasize that NFDS is a key place where ecology and evolution intersect. Specifically, there are many examples of frequency dependent processes in ecology, but fewer cases that link this process to selection. Similarly, there are many examples of selection in evolution, but fewer cases that link changes in trait values to negative frequency dependence. Bridging these two well‐developed fields of ecology and evolution will allow for mechanistic insights into the maintenance of diversity at multiple levels.

     
    more » « less
  4. Abstract

    Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.

    Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.

    Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.

    We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.

    Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.

    Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.

    Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.

     
    more » « less
  5. Abstract

    Intra‐specific negative density dependence promotes species coexistence by regulating population sizes. Patterns consistent with such density dependence are frequently reported in diverse tropical tree communities. Empirical evidence demonstrating whether intra‐specific variation is related to these patterns, however, is lacking. The present study addresses this important knowledge gap by genotyping all individuals of a tropical tree in a long‐term forest dynamics plot in tropical China. We show that related individuals are often spatially clustered, but having closely related neighbours reduces the growth performance of focal trees. We infer from the evidence that dispersal limitation and negative density dependence are operating simultaneously to impact the spatial distributions of genotypes in a natural population. Furthermore, dispersal limitation decreases local intra‐specific genetic diversity and increases negative density dependence thereby promoting niche differences and species coexistence as predicted by theory.

     
    more » « less