skip to main content


Title: A distributed circuit for associating environmental context with motor choice in retrosplenial cortex
During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.  more » « less
Award ID(s):
1934288 1707287
NSF-PAR ID:
10313317
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
35
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spatial cognition depends on an accurate representation of orientation within an environment. Head direction cells in distributed brain regions receive a range of sensory inputs, but visual input is particularly important for aligning their responses to environmental landmarks. To investigate how population-level heading responses are aligned to visual input, we recorded from retrosplenial cortex (RSC) of head-fixed mice in a moving environment using two-photon calcium imaging. We show that RSC neurons are tuned to the animal’s relative orientation in the environment, even in the absence of head movement. Next, we found that RSC receives functionally distinct projections from visual and thalamic areas and contains several functional classes of neurons. While some functional classes mirror RSC inputs, a newly discovered class coregisters visual and thalamic signals. Finally, decoding analyses reveal unique contributions to heading from each class. Our results suggest an RSC circuit for anchoring heading representations to environmental visual landmarks.

     
    more » « less
  2. Early experiences can have enduring impacts on brain and behavior, but the strength of these effects can be influenced by genetic variation. In principle, polymorphic CpGs (polyCpGs) may contribute to gene‐by‐environment interactions (G × E) by altering DNA methylation. In this study, we investigate the influence of polyCpGs on the development of vasopressin receptor 1a abundance in the retrosplenial cortex (RSC‐V1aR) of prairie voles (Microtus ochrogaster). Two alternative alleles (‘HI’/‘LO’) predict RSCavpr1aexpression, V1aR abundance and sexual fidelity in adulthood; these alleles differ in the frequency of CpG sites and in methylation at a putative intron enhancer. We hypothesized that the elevated CpG abundance in the LO allele would make homozygous LO/LO voles more sensitive to developmental perturbations. We found that genotype differences in RSC‐V1aR abundance emerged early in ontogeny and were accompanied by differences in methylation of the putative enhancer. As predicted, postnatal treatment with an oxytocin receptor antagonist (OTA) reduced RSC‐V1aR abundance in LO/LO adults but not their HI/HI siblings. Similarly, methylation inhibition by zebularine increased RSC‐V1aR in LO/LO adults, but not in HI/HI siblings. These data show a gene‐by‐environment interaction in RSC‐V1aR. Surprisingly, however, neither OTA nor zebularine altered adult methylation of the intronic enhancer, suggesting that differences in sensitivity could not be explained by CpG density at the enhancer alone. Methylated DNA immunoprecipiation‐sequencing showed additional differentially methylated regions between HI/HI and LO/LO voles. Future research should examine the role of these regions and other regulatory elements in the ontogeny of RSC‐V1aR and its developmentally induced changes.

     
    more » « less
  3. Environmental change can lead decision makers to shift rapidly among different behavioral regimes. These behavioral shifts can be accompanied by rapid changes in the firing pattern of neural networks. However, it is unknown what the populations of neurons that participate in such “network reset” phenomena are representing. Here, we investigated the following: (1) whether and where rapid changes in multivariate activity patterns are observable with fMRI during periods of rapid behavioral change and (2) what types of representations give rise to these phenomena. We did so by examining fluctuations in multivoxel patterns of BOLD activity from male and female human subjects making sequential inferences about the state of a partially observable and discontinuously changing variable. We found that, within the context of this sequential inference task, the multivariate patterns of activity in a number of cortical regions contain representations that change more rapidly during periods of uncertainty following a change in behavioral context. In motor cortex, this phenomenon was indicative of discontinuous change in behavioral outputs, whereas in visual regions, the same basic phenomenon was evoked by tracking of salient environmental changes. In most other cortical regions, including dorsolateral prefrontal and anterior cingulate cortex, the phenomenon was most consistent with directly encoding the degree of uncertainty. However, in a few other regions, including orbitofrontal cortex, the phenomenon was best explained by representations of a shifting context that evolve more rapidly during periods of rapid learning. These representations may provide a dynamic substrate for learning that facilitates rapid disengagement from learned responses during periods of change. 
    more » « less
  4. Abstract

    During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, “up-states” and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial–hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.

     
    more » « less
  5. null (Ed.)
    Neurophysiological recordings in behaving rodents demonstrate neuronal response properties that may code space and time for episodic memory and goal-directed behaviour. Here, we review recordings from hippocampus, entorhinal cortex, and retrosplenial cortex to address the problem of how neurons encode multiple overlapping spatiotemporal trajectories and disambiguate these for accurate memory-guided behaviour. The solution could involve neurons in the entorhinal cortex and hippocampus that show mixed selectivity, coding both time and location. Some grid cells and place cells that code space also respond selectively as time cells, allowing differentiation of time intervals when a rat runs in the same location during a delay period. Cells in these regions also develop new representations that differentially code the context of prior or future behaviour allowing disambiguation of overlapping trajectories. Spiking activity is also modulated by running speed and head direction, supporting the coding of episodic memory not as a series of snapshots but as a trajectory that can also be distinguished on the basis of speed and direction. Recent data also address the mechanisms by which sensory input could distinguish different spatial locations. Changes in firing rate reflect running speed on long but not short time intervals, and few cells code movement direction, arguing against path integration for coding location. Instead, new evidence for neural coding of environmental boundaries in egocentric coordinates fits with a modelling framework in which egocentric coding of barriers combined with head direction generates distinct allocentric coding of location. The egocentric input can be used both for coding the location of spatiotemporal trajectories and for retrieving specific viewpoints of the environment. Overall, these different patterns of neural activity can be used for encoding and disambiguation of prior episodic spatiotemporal trajectories or for planning of future goal-directed spatiotemporal trajectories. 
    more » « less