skip to main content

Title: Current Advances in Photoactive Agents for Cancer Imaging and Therapy
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Annual Review of Biomedical Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turnmore »also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors.« less
  2. Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatmentsmore »are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovine model up to high population densities. With other applications, the CBR has achieved cell densities as high as 1.8 x 108 cells/mL over 7 days in an 11.4-mL chamber. For this study, our goal is to begin validating the CBR by optimizing the growth of CEM (human lymphoblastic leukemia) cells, which are similar cell to cytotoxic T lymphocytes (CTLs). This can be accomplished by measuring kinetic growth parameters based on the concentrations of glucose and inhibitory metabolites in the culture. We hypothesize that by designing a kinetic model from static culture experiments, we can predict the parameters necessary to achieve peak CEM and eventually CTL growth in the CBR. We will report on kinetic growth studies in which different glucose concentrations are tested, and a maximum specific growth rate and Monod constant determined, as well as studies where varying levels of the inhibitory growth byproducts, lactate and ammonium, are added to the culture and critical inhibitor concentrations are determined. Another recent conceptual development for the design of the CBR is a real-time monitoring and feedback control system to regulate the cellular environment, based on levels of surface co-receptors and mRNA signaling within the culture. Prior studies have pinpointed T cell exhaustion as a significant issue in achieving successful immunotherapy, particularly in treatments for solid tumors; T cell exhaustion occurs during a period of chronic antigen stimulation when the cells lose their ability to target and kill cancer cells, currently theorized to be associated with particular inhibitory receptors and cytokines in the immune system. Designing a system with a fiber optic sensor that can monitor the cell state and use feedback control to regulate the pathways involved in producing these receptors will ensure the cells maintain cytotoxic properties during the expansion process within a Centrifugal Fluidized Expansion we call the CentriFLEX. In this presentation, we will also report on early results from development of this exhaustion monitoring system. In brief, achieving optimal kinetic models for the CBR system and methods to prevent T cell exhaustion has the potential to significantly enhance culture efficiency and availability of immunotherapy treatments.« less
  3. High recurrence and metastasis to vital organs are the major characteristics of triple-negative breast cancer (TNBC). Low vascular oxygen tension promotes resistance to chemo- and radiation therapy. Neuropilin-1 (NRP-1) receptor is highly expressed on TNBC cells. The tumor-penetrating iRGD peptide interacts with the NRP-1 receptor, triggers endocytosis and transcytosis, and facilitates penetration. Herein, we synthesized a hypoxia-responsive diblock PLA–diazobenzene–PEG copolymer and prepared self-assembled hypoxia-responsive polymersomes (Ps) in an aqueous buffer. The iRGD peptide was incorporated into the polymersome structure to make hypoxia-responsive iRGD-conjugated polymersomes (iPs). Doxorubicin (DOX) was encapsulated in the polymersomes to prepare both targeted and nontargeted hypoxia-responsive polymersomesmore »(DOX-iPs and DOX-Ps, respectively). The polymeric nanoparticles released less than 30% of their encapsulated DOX within 12 h under normoxic conditions (21% oxygen), whereas under hypoxia (2% oxygen) doxorubicin release remarkably increased to over 95%. The targeted polymersomes significantly decreased TNBC cells’ viability in monolayer and spheroid cultures under hypoxia compared to normoxia. Animal studies displayed that targeted polymersomes significantly diminished tumor growth in xenograft nude mice. Overall, the targeted polymersomes exhibited potent antitumor activity in monolayer, spheroid, and animal models of TNBC. With further developments, the targeted nanocarriers discussed here might have the translational potential as drug carriers for the treatment of TNBC.« less
  4. Background: Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancermore »therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods: We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results: Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions: We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.« less
  5. Transitional cell carcinoma of the bladder is particularly devastating due to its high rate of recurrence and difficulty in retention of treatments within the bladder. Current cystoscopic approaches to detect and stage the tumor are limited by the penetrative depth of the cystoscope light source, and intravesical dyes that highlight tumors for surgical resection are non-specific. To address the needs for improved specificity in tumor detection and follow-up, we report on a novel technology relying on the engineered core of mesoporous silica (MSN) with surface modifications that generate contrast in fluorescence and magnetic resonance imaging (MRI). The particle surface wasmore »further functionalized to include a bladder cancer cell specific peptide, Cyc6, identified via phage display. This peptide possesses nanomolar specificity for bladder cancer cells and homology across multiple species including mouse, canine, and human. Our study takes advantage of its target expression in bladder tumor which is not expressed in normal bladder wall. When functionalized to MSN, the Cyc6 improved binding efficiency and specificity for bladder cancer cells in vitro. In an in vivo model, MSN instilled into bladders of tumor-bearing mice enhanced T 1- and T 2-weighted MRI signals, improving the detection of the tumor boundaries. These findings support the notion that our targeted nanomaterial presents new options for early detection and eventual therapeutic intervention. Ultimately, the combination of real-time and repeated MRI evaluation of the tumors enhanced by nanoparticle contrast have the potential for translation into human clinical studies for tumor staging, therapeutic monitoring, and drug delivery.« less