skip to main content


Title: Star formation near the Sun is driven by expansion of the Local Bubble
For decades we have known that the Sun lies within the Local Bubble, a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust. However, the precise shape and extent of this shell, the impetus and timescale for its formation, and its relationship to nearby star formation have remained uncertain, largely due to low-resolution models of the local interstellar medium. Leveraging new spatial and dynamical constraints from the Gaia space mission, here we report an analysis of the 3D positions, shapes, and motions of dense gas and young stars within 200 pc of the Sun. We find that nearly all the star-forming complexes in the solar vicinity lie on the surface of the Local Bubble and that their young stars show outward expansion mainly perpendicular to the bubble's surface. Tracebacks of these young stars' motions support a scenario where the origin of the Local Bubble was a burst of stellar birth and then death (supernovae) taking place near the bubble's center beginning 14 Myr ago. The expansion of the Local Bubble created by the supernovae swept up the ambient interstellar medium into an extended shell that has now fragmented and collapsed into the most prominent nearby molecular clouds, in turn providing robust observational support for the theory of supernova-driven star formation.  more » « less
Award ID(s):
1908419 1739657
NSF-PAR ID:
10313511
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature
ISSN:
0028-0836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interstellar medium (ISM) is turbulent over vast scales and in various phases. In this paper, we study turbulence with different tracers in four nearby star-forming regions: Orion, Ophiuchus, Perseus, and Taurus. We combine the APOGEE-2 and Gaia surveys to obtain the full six-dimensional measurements of positions and velocities of young stars in these regions. The velocity structure functions (VSFs) of the stars show a universal scaling of turbulence. We also obtain Hαgas kinematics in these four regions from the Wisconsin H-Alpha Mapper. The VSFs of the Hαare more diverse compared to those of stars. In regions with recent supernova activities, they show characteristics of local energy injections and higher amplitudes compared to the VSFs of stars and of CO from the literature. Such difference in amplitude of the VSFs can be explained by the different energy and momentum transport from supernovae into different phases of the ISM, thus resulting in higher levels of turbulence in the warm ionized phase traced by Hα. In regions without recent supernova activities, the VSFs of young stars, Hα, and CO are generally consistent, indicating well-coupled turbulence between different phases. Within individual regions, the brighter parts of the Hαgas tend to have a higher level of turbulence than the low-emission parts. Our findings support a complex picture of the Milky Way ISM, where turbulence can be driven at different scales and inject energy unevenly into different phases.

     
    more » « less
  2. null (Ed.)
    The spatial decorrelation of dense molecular gas and young stars observed on ≲ 1 kiloparsec scales in nearby galaxies indicates rapid dispersal of star-forming regions by stellar feedback. We explore the sensitivity of this decorrelation to different processes controlling the structure of the interstellar medium, the abundance of molecular gas, star formation, and feedback in a suite of simulations of an isolated dwarf galaxy with structural properties similar to NGC300 that self-consistently model radiative transfer and molecular chemistry. Our fiducial simulation reproduces the magnitude of decorrelation and its scale dependence measured in NGC300, and we show that this agreement is due to different aspects of feedback, including H2 dissociation, gas heating by the locally variable UV field, early mechanical feedback, and supernovae. In particular, early radiative and mechanical feedback affect the correlation on ≲100 pc scales, while supernovae play a significant role on ≳100 pc scales. The correlation is also sensitive to the choice of the local star formation efficiency per freefall time, eps_ff, which provides a strong observational constraint on eps_ff when the global star formation rate is independent of its value. Finally, we explicitly show that the degree of correlation between the peaks of molecular gas and star formation density is directly related to the distribution of the lifetimes of star-forming regions. 
    more » « less
  3. Abstract We review the use of young low mass stars and protostars, or young stellar objects (YSOs), as tracers of star formation. Observations of molecular clouds at visible, infrared, radio and X-ray wavelengths can identify and characterize the YSOs populating these clouds, with the ability to detect deeply embedded objects at all evolutionary stages. Surveys with the Spitzer, Herschel, XMM-Newton and Chandra space telescopes have measured the spatial distribution of YSOs within a number of nearby (<2.5 kpc) molecular clouds, showing surface densities varying by more than three orders of magnitude. These surveys have been used to measure the spatially varying star formation rates and efficiencies within clouds, and when combined with maps of the molecular gas, have led to the discovery of star-forming relations within clouds. YSO surveys can also characterize the structures, ages, and star formation histories of embedded clusters, and they illuminate the relationship of the clusters to the networks of filaments, hubs and ridges in the molecular clouds from which they form. Measurements of the proper motions and radial velocities of YSOs trace the evolving kinematics of clusters from the deeply embedded phases through gas dispersal, providing insights into the factors that shape the formation of bound clusters. On 100 pc scales that encompass entire star-forming complexes, Gaia is mapping the young associations of stars that have dispersed their natal gas and exist alongside molecular clouds. These surveys reveal the complex structures and motions in associations, and show evidence for supernova driven expansions. Remnants of these associations have now been identified by Gaia, showing that traces of star-forming structures can persist for a few hundred million years. 
    more » « less
  4. ABSTRACT

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, redistributing material throughout the circumgalatic medium. Non-thermal feedback from galactic cosmic rays (CRs) – high-energy charged particles accelerated in supernovae and young stars – can impact the efficiency of wind driving. The streaming instability limits the speed at which they can escape. However, in the presence of turbulence, the streaming instability is subject to suppression that depends on the magnetization of turbulence given by its Alfvén Mach number. While previous simulations that relied on a simplified model of CR transport have shown that super-Alfvénic streaming of CRs enhances galactic winds, in this paper we take into account a realistic model of streaming suppression. We perform three-dimensional magnetohydrodynamic simulations of a section of a galactic disc and find that turbulent damping dependent on local magnetization of turbulent interstellar medium (ISM) leads to more spatially extended gas and CR distributions compared to the earlier streaming calculations, and that scale heights of these distributions increase for stronger turbulence. Our results indicate that the star formation rate increases with the level of turbulence in the ISM. We also find that the instantaneous wind mass loading is sensitive to local streaming physics with the mass loading dropping significantly as the strength of turbulence increases.

     
    more » « less
  5. Abstract We present our investigation of the extended ultraviolet (XUV) disk galaxy, NGC 3344, conducted as part of Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium survey. We use surface and aperture photometry of individual young stellar complexes to study star formation and its effect on the physical properties of the interstellar medium. We measure the specific star formation rate (sSFR) and find it to increase from 10 −10 yr −1 in the inner disk to >10 −8 yr −1 in the extended disk. This provides evidence for inside-out disk growth. If these sSFRs are maintained, the XUV disk stellar mass can double in ∼0.5 Gyr, suggesting a burst of star formation. The XUV disk will continue forming stars for a long time due to the high gas depletion times ( τ dep ). The stellar complexes in the XUV disk have high-Σ H I and low-Σ SFR with τ dep ∼ 10 Gyr, marking the onset of a deviation from the traditional Kennicutt–Schmidt law. We find that both far-ultraviolet (FUV) and a combination of FUV and 24 μ m effectively trace star formation in the XUV disk. H α is weaker in general and prone to stochasticities in the formation of massive stars. Investigation of the circumgalactic medium at 29.5 kpc resulted in the detection of two absorbing systems with metal-line species: the stronger absorption component is consistent with gas flows around the disk, most likely tracing inflow, while the weaker component is likely tracing corotating circumgalactic gas. 
    more » « less