skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Creating Opportunities to Help Students Be Prepared for Careers in a STEM Field
This presentation reports on an ongoing National Science Foundation's (NSF's) Division of Undergraduate Education (DUE) funded project in the Department of Mathematical and Computer Sciences at Indiana University of Pennsylvania (IUP). The goals of the project include increasing the number of students graduating with a major, minor, or Master’s degree in mathematics; strengthening the academic culture in the department; and strengthening the relationships within the broader STEM community within and beyond the university. The project aims to achieve these goals by providing financial assistance to students in need to pursue their degree and developing a series of activities each semester designed to strengthen relationships within the academic and STEM communities. Ways in which the goals of the project are being met will be shared including: recruiting strategies used to get students into the program; offering of activities in the form of presentations and workshops to help students prepare for careers the STEM industry; peer-led tutoring sessions to help with academic success in mathematics classes, and monthly meetings in which participants present original research. Data collected from student surveys at the end of each semester will be reported. Finally, the impact of transitioning to online learning as a result of COVID-19 in the middle of a semester on a project that focuses on community development will be shared. In addition, to students’ responses to online learning data collected from faculty teaching in STEM disciplines will also be shared. The following sources of information were used for this presentation; quantitative and qualitative data gathered from End of Semester surveys, student reflection narratives concerning their small group activities, and reports that summarizes and evaluates the peer-led team learning sessions.  more » « less
Award ID(s):
1742304
PAR ID:
10313611
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Academic bridge courses are implemented to impact students’ academic success by revising fundamental concepts and skills necessary to successfully complete discipline-specific courses. The bridge courses are often short (one to three weeks) and highly dense in content (commonly mathematics or math-related applications). With the support of the NSF-funded (DUE - Division of Undergraduate Education) STEM Center at Sam Houston State University (SHSU), we designed a course for upcoming engineering majors (i.e., first-year students and transfer students) that consists of a two-week-long pre-semester course organized into two main sessions. The first sessions (delivered in the mornings) were synchronous activities focused on strengthening student academic preparedness and socio-academic integration and fostering networking leading to a strong STEM learning community. The second sessions (delivered in the afternoons) were asynchronous activities focused on discipline-specific content knowledge in engineering. The engineering concepts were organized via eight learning modules covering basic math operations, applied trigonometry, functions in engineering, applied physics, introduction to statics and Microsoft Excel, and engineering economics and its applied decision. All materials in the course were designed by engineering faculty (from the chair of the department to assistant professors and lecturers in engineering) and one educational research faculty (from the department of chemistry). The course design process started with a literature review on engineering bridge courses to understand prior work, followed by surveying current engineering faculty to propose goals for the course. The designed team met weekly after setting the course goals over two semesters. The design process was initiated with backward design principles (i.e., start with the course goals, then the assessments, end with the learning activities) and continued with ongoing revision. The work herein presents this new engineering bridge course’s goals, strategy, and design process. Preliminary student outcomes will be discussed based on the course’s first implementation during summer 2021. 
    more » « less
  2. The Urban STEM Collaboratory is a tri-institution collaboration of University of Memphis (UofM), University of Colorado Denver (CU Denver), and Indiana University Purdue University Indianapolis (IUPUI). Each of the three partner universities is embedded in a large city, and serves similar student populations, i.e. students who tend to be first generation, minorities, and/or commuters. These universities encounter similar challenges in first-year retention and graduation rates, especially in the STEM disciplines. As they strive to improve the first year engineering and/or mathematics student experience at their campuses, they have engaged in different approaches; including Peer Led Team Learning (PLTL), formation of an Engineering Learning Community (ELC), and engaging students in outreach as STEM Ambassadors. Incorporating these individual strengths with new activities that will be shared across institutions, the team is currently embarking on a multi-year research project to uncover how students develop STEM identity in an urban context, identify interventions that support this development, and determine the impact that STEM identity has on student success. Through the support of an NSF S-STEM grant, the three universities are also providing scholarships to students engaged in the project. Here, we share the initial efforts of our tri-campus interaction and collaboration, our overarching goals, our systems of recruiting students, and our initial collection of preliminary data and findings for Year 1. 
    more » « less
  3. With college advisory boards and potential employers consistently voicing their desire for engineers and scientists who can communicate well, work effectively in teams, and independently problem-solve, the Colleges of Engineering & Computer Science (ECS) and Natural Sciences and Mathematics (NSM) at Sacramento State University, a large, public, primarily undergraduate institution, have deployed two programs to explicitly address these skills for undergraduate science, technology, engineering, and mathematics (STEM) students. The goals of the NSF-funded Achieving STEM Persistence through Peer-Assisted Learning and Leadership Development (ASPIRE) project are to increase retention and decrease time to graduation for STEM students, as well as increase retention of women and underrepresented minorities (URM) in the STEM workforce by implementing evidence-based practices to promote student success during two critical transitions: 1) from lower-division to upper-division coursework in engineering; and 2) from upper-division coursework to an entry-level STEM career. ASPIRE aims to achieve these goals by: 1) adapting and implementing the NSM Peer Assisted Learning (PAL) program in gateway engineering courses; and 2) developing the Hornet Leadership Program which includes scaffolded opportunities for students to explore their leadership capacity and develop leadership skills. The main research questions for this study include: (1) Will the ECS PAL model and Hornet Leadership Program result in increased persistence and workforce readiness in STEM majors at a large, diverse university? (2) What attitude changes will this project have on students and faculty and the relationships between them? The first question is addressed through pre- and post-implementation student surveys and student course/GPA data. The second question is addressed through faculty surveys, faculty focus groups/interviews, and pre- and post-data from a faculty professional development workshop. In general, preliminary results from this study indicate the new ECS PAL program successfully attracts URM students and thus has the potential to support their persistence and STEM workforce readiness. Additionally, undergraduate students across both Colleges who participated in the inaugural Hornet Leadership Program gained non-technical skills and experiences directly linked to competitiveness and preparation for workforce entry and graduate programs. Finally, faculty surveys and the faculty professional development workshop indicate that faculty value student leadership development, but identify barriers to accomplishing this work. 
    more » « less
  4. The Urban STEM Collaboratory is a tri-institution collaboration of (school 1), (school 2), and (school 3). Each of the three partner universities is embedded in a large city, and serve similar student populations, i.e. students who tend to be first generation, minorities, older, and/or commuting to campus. These universities encounter similar challenges in first-year retention and graduation rates, especially in the STEM disciplines. As they strive to improve the first year engineering and/or mathematics student experience at their campuses, they have engaged in different approaches; including Peer Led Team Learning (PLTL), formation of an Engineering Learning Community (ELC), and engaging students in outreach as STEM Ambassadors. Incorporating these individual strengths with new activities that will be shared across institutions, the team is currently embarking on a multi-year research project to uncover how students develop STEM identity in an urban context, identify interventions that support this development, and determine the impact that STEM identity has on student success. Through the support of an NSF S-STEM grant, the three universities are also providing scholarships to students engaged in the project. Here, we share the initial efforts of our tri-campus interaction and collaboration, our overarching goals, our systems of recruiting students, and our initial collection of preliminary data and findings for Year 1. 
    more » « less
  5. This paper reports on the culmination of an NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) awarded to a two-year college located in a metro area with high rates of concentrated poverty and low levels of educational attainment. This two-year college is a minority-serving institution with curriculum to prepare students majoring in engineering to transfer and complete a baccalaureate degree at a four-year university. The Engineering Scholars Program (ESP) was established in fall 2019 to award students majoring in engineering annual scholarships of up to $6000, depending on financial need. In addition to supporting students through scholarships, the program engages scholars in professional development activities inclusive of academic seminars, extracurricular events, and undergraduate research opportunities in collaboration with the local four-year university. The program also established a mentorship structure with faculty mentors, student peer mentors, and academic advising. In addition to supporting scholars at the two-year college, the ESP provides support for a portion of cohorts that have transferred to the local four-year university and remained connected to the program. To date, the ESP has awarded a total of 131 semester long scholarships; 16 in year one (2019-2020), 28 in year two (2020-2021), 35 in year three (2021-2022), including six transfers, 38 in year four (2022-2023), including eight transfers, and 28 in year five (2023-2024), including 10 transfers. In year three, the ESP was awarded supplemental funding to support a larger portion of students and transfer cohorts; this helped reduce the financial burdens resulting from exacerbated financial needs due to the COVID-19 pandemic during years two and three of this project. This paper details the progress made towards the achievement of the program goals of creating a welcoming STEM climate at the two-year college, increasing the participation and persistence in engineering among economically disadvantaged students, and establishing transfer support to the local four-year university. Program evaluation findings have identified several opportunities for sustaining scholar transfer support outside of the financial support provided in the form of scholarships. These opportunities fell into two major themes: (1) peer-led transfer support inclusive of connecting transferred students and students preparing for transfer with emphasis on navigating different university structures, and (2) collaboration across engineering disciplines to develop and offer interdisciplinary undergraduate research and/or collaborative work on other projects. Furthermore, research findings from interviews with scholars provided additional context for taking action on program outcomes while also enhancing the understanding of how participation in a collaborative cohort experience can contribute to students’ membership within the STEM community and the construction of their own STEM identity. Although formal financial support sunsets during the final year of the ESP, program and research findings have identified programmatic elements that provide key support for students and can be sustained into the future. This paper reports on the program strategy for meeting the future needs of scholars at both the two-year college and the four-year transfer university. 
    more » « less