skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trisections and link surgeries
We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $$\#^j S^1 \times S^2$$ and have surgeries yielding $$\#^k S^1 \times S^2$$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer.  more » « less
Award ID(s):
1664587
PAR ID:
10313615
Author(s) / Creator(s):
;
Date Published:
Journal Name:
New Zealand Journal of Mathematics
Volume:
52
ISSN:
1179-4984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access. 
    more » « less
  2. The classic graphical Cheeger inequalities state that if $$M$$ is an $$n\times n$$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1-\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1-\lambda_{2}(M))} \] where $$\phi(M)=\min_{S\subseteq[n],|S|\leq n/2}\left(\frac{1}{|S|}\sum_{i\in S,j\not\in S}M_{i,j}\right)$$ is the edge expansion of $$M$$, and $$\lambda_{2}(M)$$ is the second largest eigenvalue of $$M$$. We study the relationship between $$\phi(A)$$ and the spectral gap $$1-\re\lambda_{2}(A)$$ for \emph{any} doubly stochastic matrix $$A$$ (not necessarily symmetric), where $$\lambda_{2}(A)$$ is a nontrivial eigenvalue of $$A$$ with maximum real part. Fiedler showed that the upper bound on $$\phi(A)$$ is unaffected, i.e., $$\phi(A)\leq\sqrt{2\cdot(1-\re\lambda_{2}(A))}$$. With regards to the lower bound on $$\phi(A)$$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1-\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $$n$$ is necessary to lower bound $$\phi(A)$$. In our first result, we provide an \emph{exponentially} better construction of $$n\times n$$ doubly stochastic matrices $$A_{n}$$, for which \[ \phi(A_{n})\leq\frac{1-\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $$0$$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $$n$$), by showing that for any doubly stochastic matrix $$A$$, \[ \phi(A)\geq\frac{1-\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of a factor of $$n^{\alpha}$ for $$\frac{1}{2}\leq\alpha\leq1$$ in lower bounding $$\phi$$ by the spectral gap in the nonsymmetric setting. Our second result extends these bounds to general matrices $$R$$ with nonnegative entries, to obtain a two-sided \emph{gapped} refinement of the Perron-Frobenius theorem. Recall from the Perron-Frobenius theorem that for such $$R$$, there is a nonnegative eigenvalue $$r$$ such that all eigenvalues of $$R$$ lie within the closed disk of radius $$r$$ about $$0$$. Further, if $$R$$ is irreducible, which means $$\phi(R)>0$$ (for suitably defined $$\phi$$), then $$r$$ is positive and all other eigenvalues lie within the \textit{open} disk, so (with eigenvalues sorted by real part), $$\re\lambda_{2}(R) 
    more » « less
  3. Abstract We prove that if K is a nontrivial null-homotopic knot in a closed oriented 3–manfiold Y such that $Y-K$ does not have an $$S^1\times S^2$$ summand, then the zero surgery on K does not have an $$S^1\times S^2$$ summand. This generalises a result of Hom and Lidman, who proved the case when Y is an irreducible rational homology sphere. 
    more » « less
  4. From a handle-theoretic perspective, the simplest contractible 4-manifolds, other than the 4-ball, are Mazur manifolds. We produce the first pairs of Mazur manifolds that are homeomorphic but not diffeomorphic. Our diffeomorphism obstruction comes from our proof that the knot Floer homology concordance invariant ν is an invariant of the trace of a knot, i.e. the smooth 4-manifold obtained by attaching a 2-handle to the 4-ball along K. This provides a computable, integer-valued diffeomorphism invariant that is effective at distinguishing exotic smooth structures on knot traces and other simple 4-manifolds, including when other adjunction-type obstructions are ineffective. We also show that the concordance invariants τ and ϵ are not knot trace invariants. As a corollary to the existence of exotic Mazur manifolds, we produce integer homology 3-spheres admitting two distinct surgeries to $$S^1 \times S^2$$, resolving a question from Problem 1.16 in Kirby's list. 
    more » « less
  5. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping class groups should send pseudo-Anosov mapping classes to elements of infinite order (for large enough level r). In this paper, we relate the AMU conjecture to a question about the growth of the Turaev-Viro invariants TVr of hyperbolic 3-manifolds. We show that if the r-growth of |TVr(M)| for a hyperbolic 3-manifold M that fibers over the circle is exponential, then the monodromy of the fibration of M satisfies the AMU conjecture. Building on earlier work \cite{DK} we give broad constructions of (oriented) hyperbolic fibered links, of arbitrarily high genus, whose SO(3)-Turaev-Viro invariants have exponential r-growth. As a result, for any g>n⩾2, we obtain infinite families of non-conjugate pseudo-Anosov mapping classes, acting on surfaces of genus g and n boundary components, that satisfy the AMU conjecture. We also discuss integrality properties of the traces of quantum representations and we answer a question of Chen and Yang about Turaev-Viro invariants of torus links. 
    more » « less