skip to main content


Title: Identification of Active Magnetic Reconnection Using Magnetic Flux Transport in Plasma Turbulence
Abstract Magnetic reconnection has been suggested to play an important role in the dynamics and energetics of plasma turbulence by spacecraft observations, simulations, and theory over the past two decades, and recently, by magnetosheath observations of MMS. A new method based on magnetic flux transport (MFT) has been developed to identify reconnection activity in turbulent plasmas. This method is applied to a gyrokinetic simulation of two-dimensional (2D) plasma turbulence. Results on the identification of three active reconnection X-points are reported. The first two X-points have developed bidirectional electron outflow jets. Beyond the category of electron-only reconnection, the third X-point does not have bidirectional electron outflow jets because the flow is modified by turbulence. In all cases, this method successfully identifies active reconnection through clear inward and outward flux transport around the X-points. This transport pattern defines reconnection and produces a new quadrupolar structure in the divergence of MFT. This method is expected to be applicable to spacecraft missions such as MMS, Parker Solar Probe, and Solar Orbiter.  more » « less
Award ID(s):
2000222
NSF-PAR ID:
10313685
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
909
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic reconnection plays an important role in converting energy while modifying field topology. This process takes place under varied plasma conditions during which the transport of magnetic flux is intrinsic. Identifying active magnetic reconnection sites with in situ observations is challenging. A new technique, Magnetic Flux Transport (MFT) analysis, has been developed recently and proven in numerical simulation for identifying active reconnection efficiently and accurately. In this study, we examine the MFT process in 37 previously reported electron diffusion region (EDR)/reconnection-line crossing events at the day-side magnetopause and in the magnetotail and turbulent magnetosheath using Magnetospheric Multiscale measurements. The coexisting inward and outward MFT flows at an X-point provides a signature that magnetic field lines become disconnected and reconnected. The application of MFT analysis to in-situ observations demonstrates that MFT can successfully identify active reconnection sites under complex varied conditions, including asymmetric and turbulent upstream conditions. It also provides a higher rate of identification than plasma outflow jets alone. MFT can be applied to in situ measurements from both single- and multi-spacecraft missions and laboratory experiments.

     
    more » « less
  2. Abstract We investigate the detailed properties of electron inflow in an electron-only reconnection event observed by the four Magnetospheric Multiscale (MMS) spacecraft in the Earth's turbulent magnetosheath downstream of the quasi-parallel bow shock. The lack of ion coupling was attributed to the small-scale sizes of the current sheets, and the observed bidirectional super-Alfvénic electron jets indicate that the MMS spacecraft crossed the reconnecting current sheet on both sides of an active X-line. Remarkably, the MMS spacecraft observed the presence of large asymmetries in the two electron inflows, with the inflows (normal to the current sheet) on the two sides of the reconnecting current layer differing by as much as a factor of four. Furthermore, even though the four MMS spacecraft were separated by less than seven electron skin depths, the degree of inflow asymmetry was significantly different at the different spacecraft. The asymmetry in the inflow speeds was larger with increasing distances downstream from the reconnection site, and the asymmetry was opposite on the two sides of the X-line. We compare the MMS observations with a 2D kinetic particle-in-cell (PIC) simulation and find that the asymmetry in the inflow speeds stems from in-plane currents generated via the combination of reconnection-mediated inflows and parallel flows along the magnetic separatrices in the presence of a large guide field. 
    more » « less
  3. Abstract

    While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward‐to‐earthward outflow reversal, current‐carrying electron jets in the direction along the electron meandering motion or out‐of‐plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out‐of‐plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.

     
    more » « less
  4. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less
  5. Abstract

    Mining of substorm magnetic field data reveals the formation of two X‐lines preceded by the flux accumulation at the tailward end of a thin current sheet (TCS). Three‐dimensional particle‐in‐cell simulations guided by these pre‐onset reconnection features are performed, taking also into account weak external driving, negative charging of TCS and domination of electrons as current carriers. Simulations reveal an interesting multiscale picture. On the global scale, they show the formation of two X‐lines, with stronger magnetic field variations and inhomogeneous electric fields found closer to Earth. The X‐line appearance is preceded by the formation of two diverging electron outflow regions embedded into a single diverging ion outflow pattern and transforming into faster electron‐scale reconnection jets after the onset. Distributions of the agyrotropy parameters suggest that reconnection is provided by ion and then electron demagnetization. The bulk flow and agyrotropy distributions are consistent with MMS observations.

     
    more » « less